1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
|
/*****************************************************************************
/
/ SPACE SPArse Cholesky Elimination) Library: tree.c
/
/ author J"urgen Schulze, University of Paderborn
/ created 09/15/99
/
/ This file contains functions dealing with elimination/front tree object
/
******************************************************************************
Data type: struct elimtree
int nvtx; number of vertices in the tree
int nfronts; number of fronts in the tree
int root; root of the tree
int *ncolfactor; number of factor columns in front
int *ncolupdate; number of update columns for front
int *parent; parent in front tree
int *firstchild; first child in front tree
int *silbings; silbings in front tree
int *vtx2front; maps vertices to fronts
Comments:
o Structure used to hold the elimination/front tree; the tree is used to
guide the symbolical and numerical factorization; a "node" in the tree
can be a single vertex (in the context of an elimination tree) or a group
of vertices (as for a front tree)
o NOTE: Also the ordering can be expressed in terms of front trees; the
permutation vector perm is then obtained by a post order traversal
of the tree (see method permFromElimTree below)
Methods in lib/tree.c:
- T = newElimTree(int nvtx, int nfronts);
o Initial: root = -1
- void freeElimTree(elimtree_t *T);
- void printElimTree(elimtree_t *T);
- int firstPostorder(elimtree_t *T);
o returns the first front in a post order traversal of T
- int firstPostorder2(elimtree_t *T, int root);
o returns the first front in a post order traversal of T[root]
- int nextPostorder(elimtree_t *T, int J);
o returns the front that follows J in a post order traversal of T
- int firstPreorder(elimtree_t *T);
o returns the first front in a pre order traversal of T
- int nextPreorder(elimtree_t *T, int J);
o returns the front that follows J in a pre order traversal of T
- T = setupElimTree(graph_t *G, int *perm, int *invp);
o constructs an elimination tree for G with permutation vectors perm,
invp; a union-find algorithm is used to set up the parent vector of T;
T->root and vectors T->firstchild, T->silbings are initialized by
calling initFchSilbRoot; vector T->ncolupdate is filled by calling
function setupCSSFromGraph (see below)
- void initFchSilbRoot(elimtree_t *T);
o uses vector T->parent to initialize T->firstchild, T->silbings, T->root
- void permFromElimTree(elimtree_t *T, int *perm);
o fills vectors perm, invp according to a post order traversal of T
- T2 = expandElimTree(elimtree_t *T, int *vtxmap, int nvtxorg)
o creates and returns an elimtree object for the uncompressed graph;
the map from original vertices to compressed vertices is found in vector
vtxmap; the number of original vertices (i.e. the length of vector
vtxmap) is nvtxorg
o NOTE: the function only expands vector T->vtx2front and sets
T2->nvtx to nvtxorg; all other vectors are copied from T to T2, i.e.
the number of fronts and the tree structure are the same in T and T2
- PTP = permuteElimTree(elimtree_t *T, int *perm);
o in T: vtx2front[u] points to front containing vertex u
in PTP: vtx2front[k] points to front containing column k = perm[u]
o NOTE: the function only permutes vector T->vtx2front; all other vectors
are copied from T to PTP, i.e. the number of fronts and the tree
structure are the same in T and PTP
- T2 = fundamentalFronts(elimtree_t *T);
o compresses chains of fronts to a single front; once a map from original
fronts to compressed fronts is known, the compressed elimtree object T2
can be created by calling compressElimTree (see below)
- T2 = mergeFronts(elimtree_t *T, int maxzeros);
o merges small subtrees together in one front; it returns an elimtree
object T2 where a front has either been merged with none or all of its
children; the maximal number of zero entries that is allowed to be
introduced when merging the fronts together is given by maxzeros
- T2 = compressElimTree(elimtree_t *T, int *frontmap, int cnfronts);
o creates a new front tree using frontmap; vector frontmap maps the
original fronts of T to a smaller set of fronts; cnfronts is number of
new fronts (i.e. the maximal entry in frontmap)
- int justifyFronts(elimtree_t *T);
o orders the children of a front so that the working storage in the
multifrontal algorithm is minimized; the function returns the amount
of extra working storage for the justified tree
- int nWorkspace(elimtree_t *T);
o returns the size of the working storage in the multifrontal algorithm
(measured in terms of FLOATS, for BYTES multiply with sizeof(FLOAT))
- int nFactorIndices(elimtree_t *T);
o returns the number of indices taken by the factor matrix represented by T
- int nFactorEntries(elimtree_t *T);
o returns the number of entries taken by the factor matrix represented by T
- FLOAT nFactorOps(elimtree_t *T);
o returns the number of operations required to compute the factor matrix
represented by T
- void subtreeFactorOps(elimtree *T, FLOAT *ops)
o returns in ops[K] the number of operations required to factor the fronts
in tree T(K) (this includes front K)
- FLOAT nTriangularOps(elimtree_t *T);
o returns the number of operations required to solve the triangular systems
******************************************************************************/
#include <space.h>
/*****************************************************************************
******************************************************************************/
elimtree_t*
newElimTree(PORD_INT nvtx, PORD_INT nfronts)
{ elimtree_t *T;
mymalloc(T, 1, elimtree_t);
mymalloc(T->ncolfactor, nfronts, PORD_INT);
mymalloc(T->ncolupdate, nfronts, PORD_INT);
mymalloc(T->parent, nfronts, PORD_INT);
mymalloc(T->firstchild, nfronts, PORD_INT);
mymalloc(T->silbings, nfronts, PORD_INT);
mymalloc(T->vtx2front, nvtx, PORD_INT);
T->nvtx = nvtx;
T->nfronts = nfronts;
T->root = -1;
return(T);
}
/*****************************************************************************
******************************************************************************/
void
freeElimTree(elimtree_t *T)
{
free(T->ncolfactor);
free(T->ncolupdate);
free(T->parent);
free(T->firstchild);
free(T->silbings);
free(T->vtx2front);
free(T);
}
/*****************************************************************************
******************************************************************************/
void
printElimTree(elimtree_t *T)
{ PORD_INT *ncolfactor, *ncolupdate, *parent, *firstchild, *silbings, *vtx2front;
PORD_INT *first, *link, nvtx, nfronts, root, J, K, u, count, child;
nvtx = T->nvtx;
nfronts = T->nfronts;
root = T->root;
ncolfactor = T->ncolfactor;
ncolupdate = T->ncolupdate;
parent = T->parent;
firstchild = T->firstchild;
silbings = T->silbings;
vtx2front = T->vtx2front;
printf("#fronts %d, root %d\n", nfronts, root);
/* -----------------------------------------------------------
store the vertices/columns of a front in a bucket structure
----------------------------------------------------------- */
mymalloc(first, nfronts, PORD_INT);
mymalloc(link, nvtx, PORD_INT);
for (J = 0; J < nfronts; J++)
first[J] = -1;
for (u = nvtx-1; u >= 0; u--)
{ J = vtx2front[u];
link[u] = first[J];
first[J] = u;
}
/* -----------------------------------------------------------
print fronts according to a postorder traversal of the tree
----------------------------------------------------------- */
for (K = firstPostorder(T); K != -1; K = nextPostorder(T, K))
{ printf("--- front %d, ncolfactor %d, ncolupdate %d, parent %d\n",
K, ncolfactor[K], ncolupdate[K], parent[K]);
count = 0;
printf("children:\n");
for (child = firstchild[K]; child != -1; child = silbings[child])
{ printf("%5d", child);
if ((++count % 16) == 0)
printf("\n");
}
if ((count % 16) != 0)
printf("\n");
count = 0;
printf("vertices mapped to front:\n");
for (u = first[K]; u != -1; u = link[u])
{ printf("%5d", u);
if ((++count % 16) == 0)
printf("\n");
}
if ((count % 16) != 0)
printf("\n");
}
/* ----------------------
free memory and return
---------------------- */
free(first); free(link);
}
/*****************************************************************************
******************************************************************************/
PORD_INT
firstPostorder(elimtree_t *T)
{ PORD_INT *firstchild, J;
firstchild = T->firstchild;
if ((J = T->root) != -1)
while (firstchild[J] != -1)
J = firstchild[J];
return(J);
}
/*****************************************************************************
******************************************************************************/
PORD_INT
firstPostorder2(elimtree_t *T, PORD_INT root)
{ PORD_INT *firstchild, J;
firstchild = T->firstchild;
if ((J = root) != -1)
while (firstchild[J] != -1)
J = firstchild[J];
return(J);
}
/*****************************************************************************
******************************************************************************/
PORD_INT
nextPostorder(elimtree_t *T, PORD_INT J)
{ PORD_INT *parent, *firstchild, *silbings;
parent = T->parent;
firstchild = T->firstchild;
silbings = T->silbings;
if (silbings[J] != -1)
{ J = silbings[J];
while (firstchild[J] != -1)
J = firstchild[J];
}
else J = parent[J];
return(J);
}
/*****************************************************************************
******************************************************************************/
PORD_INT
firstPreorder(elimtree_t *T)
{
return(T->root);
}
/*****************************************************************************
******************************************************************************/
PORD_INT
nextPreorder(elimtree_t *T, PORD_INT J)
{ PORD_INT *parent, *firstchild, *silbings;
parent = T->parent;
firstchild = T->firstchild;
silbings = T->silbings;
if (firstchild[J] != -1)
J = firstchild[J];
else
{ while ((silbings[J] == -1) && (parent[J] != -1))
J = parent[J];
J = silbings[J];
}
return(J);
}
/*****************************************************************************
******************************************************************************/
elimtree_t*
setupElimTree(graph_t *G, PORD_INT *perm, PORD_INT *invp)
{ elimtree_t *T;
css_t *css;
PORD_INT *xadj, *adjncy, *vwght, *ncolfactor, *ncolupdate, *parent;
PORD_INT *vtx2front, *realroot, *uf_father, *uf_size;
PORD_INT *xnzl, *nzlsub, *xnzlsub;
PORD_INT nvtx, front, front2, froot, f, r, u, v, i, istart, istop;
PORD_INT prevlen, len, h, hsub;
nvtx = G->nvtx;
xadj = G->xadj;
adjncy = G->adjncy;
vwght = G->vwght;
/* --------------------------
set up the working storage
-------------------------- */
mymalloc(realroot, nvtx, PORD_INT);
mymalloc(uf_father, nvtx, PORD_INT);
mymalloc(uf_size, nvtx, PORD_INT);
/* ------------------------------------------------
allocate storage for the elimination tree object
------------------------------------------------ */
T = newElimTree(nvtx, nvtx);
ncolfactor = T->ncolfactor;
ncolupdate = T->ncolupdate;
parent = T->parent;
vtx2front = T->vtx2front;
/* -----------------------------
set up the parent vector of T
----------------------------- */
for (front = 0; front < nvtx; front++)
{ parent[front] = -1;
u = invp[front]; /* only vertex u belongs to this front */
uf_father[front] = front; /* front forms a set in union-find structure */
uf_size[front] = 1; /* the set consists of a single front */
realroot[front] = front;
froot = front;
/* run through the adjacency list of u */
istart = xadj[u];
istop = xadj[u+1];
for (i = istart; i < istop; i++)
{ v = adjncy[i];
front2 = perm[v];
if (front2 < front)
{ r = front2;
while (uf_father[r] != r) /* find root of front2 in union-find */
r = uf_father[r];
while (front2 != r) /* path compression */
{ f = front2;
front2 = uf_father[front2];
uf_father[f] = r;
}
f = realroot[r]; /* merge union-find sets */
if ((parent[f] == -1) && (f != front))
{ parent[f] = front;
if (uf_size[froot] < uf_size[r])
{ uf_father[froot] = r;
uf_size[r] += uf_size[froot];
froot = r;
}
else
{ uf_father[r] = froot;
uf_size[froot] += uf_size[r];
}
realroot[froot] = front;
}
}
}
}
/* ---------------------------------------------
set the vectors T->firstchild and T->silbings
--------------------------------------------- */
initFchSilbRoot(T);
/* ----------------------------------------------------------
set the vectors T->vtx2front, T->ncolfactor, T->ncolupdate
---------------------------------------------------------- */
css = setupCSSFromGraph(G, perm, invp);
xnzl = css->xnzl;
nzlsub = css->nzlsub;
xnzlsub = css->xnzlsub;
prevlen = 0;
for (front = 0; front < nvtx; front++)
{ u = invp[front];
ncolfactor[front] = vwght[u];
ncolupdate[front] = 0;
vtx2front[u] = front;
len = xnzl[front+1] - xnzl[front];
if (prevlen - 1 == len)
ncolupdate[front] = ncolupdate[front-1] - vwght[u];
else
{ h = xnzlsub[front] + 1;
for (i = 1; i < len; i++)
{ hsub = nzlsub[h++];
v = invp[hsub];
ncolupdate[front] += vwght[v];
}
}
prevlen = len;
}
/* ----------------------
free memory and return
---------------------- */
free(css);
free(realroot); free(uf_father); free(uf_size);
return(T);
}
/*****************************************************************************
******************************************************************************/
void
initFchSilbRoot(elimtree_t *T)
{ PORD_INT *parent, *firstchild, *silbings, nfronts, J, pJ;
nfronts = T->nfronts;
parent = T->parent;
firstchild = T->firstchild;
silbings = T->silbings;
for (J = 0; J < nfronts; J++)
silbings[J] = firstchild[J] = -1;
for (J = nfronts-1; J >= 0; J--)
if ((pJ = parent[J]) != -1)
{ silbings[J] = firstchild[pJ];
firstchild[pJ] = J;
}
else
{ silbings[J] = T->root;
T->root = J;
}
}
/*****************************************************************************
******************************************************************************/
void
permFromElimTree(elimtree_t *T, PORD_INT *perm)
{ PORD_INT *vtx2front, *first, *link;
PORD_INT nvtx, nfronts, K, u, count;
nvtx = T->nvtx;
nfronts = T->nfronts;
vtx2front = T->vtx2front;
/* -----------------------------------------------------------
store the vertices/columns of a front in a bucket structure
----------------------------------------------------------- */
mymalloc(first, nfronts, PORD_INT);
mymalloc(link, nvtx, PORD_INT);
for (K = 0; K < nfronts; K++)
first[K] = -1;
for (u = nvtx-1; u >= 0; u--)
{ K = vtx2front[u];
link[u] = first[K];
first[K] = u;
}
/* -----------------------------------------------------
postorder traversal of the elimination tree to obtain
the permutation vectors perm, invp
----------------------------------------------------- */
count = 0;
for (K = firstPostorder(T); K != -1; K = nextPostorder(T, K))
for (u = first[K]; u != -1; u = link[u])
{ perm[u] = count;
count++;
}
/* ----------------------
free memory and return
---------------------- */
free(first); free(link);
}
/*****************************************************************************
******************************************************************************/
elimtree_t*
permuteElimTree(elimtree_t *T, PORD_INT *perm)
{ elimtree_t *PTP;
PORD_INT nvtx, nfronts, J, u;
nvtx = T->nvtx;
nfronts = T->nfronts;
/* --------------------------------------------------------------
allocate space for the new elimtree object and copy front data
the permuted tree has the same number of fronts/tree structure
-------------------------------------------------------------- */
PTP = newElimTree(nvtx, nfronts);
PTP->root = T->root;
for (J = 0; J < nfronts; J++)
{ PTP->ncolfactor[J] = T->ncolfactor[J];
PTP->ncolupdate[J] = T->ncolupdate[J];
PTP->parent[J] = T->parent[J];
PTP->firstchild[J] = T->firstchild[J];
PTP->silbings[J] = T->silbings[J];
}
/* ---------------------------------------------------------------------
set up the new vtx2front vector; the trees only differ in this vector
--------------------------------------------------------------------- */
for (u = 0; u < nvtx; u++)
PTP->vtx2front[perm[u]] = T->vtx2front[u];
return(PTP);
}
/*****************************************************************************
******************************************************************************/
elimtree_t*
expandElimTree(elimtree_t *T, PORD_INT *vtxmap, PORD_INT nvtxorg)
{ elimtree_t *T2;
PORD_INT *vtx2front, *vtx2front2;
PORD_INT nfronts, J, u;
nfronts = T->nfronts;
/* --------------------------------------------------------------
allocate space for the new elimtree object and copy front data
the expanded tree has the same number of fronts/tree structure
-------------------------------------------------------------- */
T2 = newElimTree(nvtxorg, nfronts);
T2->root = T->root;
for (J = 0; J < nfronts; J++)
{ T2->ncolfactor[J] = T->ncolfactor[J];
T2->ncolupdate[J] = T->ncolupdate[J];
T2->parent[J] = T->parent[J];
T2->firstchild[J] = T->firstchild[J];
T2->silbings[J] = T->silbings[J];
}
/* ---------------------------------------------------------------------
set up the new vtx2front vector; the trees only differ in this vector
--------------------------------------------------------------------- */
vtx2front = T->vtx2front;
vtx2front2 = T2->vtx2front;
for (u = 0; u < nvtxorg; u++)
vtx2front2[u] = vtx2front[vtxmap[u]];
return(T2);
}
/*****************************************************************************
******************************************************************************/
elimtree_t*
fundamentalFronts(elimtree_t *T)
{ elimtree_t *T2;
PORD_INT *ncolfactor, *ncolupdate, *parent, *firstchild, *silbings;
PORD_INT *frontmap, nfronts, cnfronts, J, child;
nfronts = T->nfronts;
ncolfactor = T->ncolfactor;
ncolupdate = T->ncolupdate;
parent = T->parent;
firstchild = T->firstchild;
silbings = T->silbings;
/* -------------------------
set up the working arrays
------------------------- */
mymalloc(frontmap, nfronts, PORD_INT);
/* -----------------------------
search the fundamental fronts
----------------------------- */
cnfronts = 0;
J = T->root;
while (J != -1)
{ while (firstchild[J] != -1)
J = firstchild[J];
frontmap[J] = cnfronts++;
while ((silbings[J] == -1) && (parent[J] != -1))
{ J = parent[J];
child = firstchild[J];
if ((silbings[child] != -1)
|| (ncolupdate[child] != ncolfactor[J] + ncolupdate[J]))
frontmap[J] = cnfronts++;
else
frontmap[J] = frontmap[child];
}
J = silbings[J];
}
/* ------------------------------
construct new elimination tree
------------------------------ */
T2 = compressElimTree(T, frontmap, cnfronts);
/* ----------------------
free memory and return
---------------------- */
free(frontmap);
return(T2);
}
/*****************************************************************************
******************************************************************************/
elimtree_t*
mergeFronts(elimtree_t *T, PORD_INT maxzeros)
{ elimtree_t *T2;
PORD_INT *ncolfactor, *ncolupdate, *firstchild, *silbings;
PORD_INT *frontmap, *newncolfactor, *nzeros, *rep;
PORD_INT nfronts, cnfronts, K, ncolfrontK, J, Jall, cost;
nfronts = T->nfronts;
ncolfactor = T->ncolfactor;
ncolupdate = T->ncolupdate;
firstchild = T->firstchild;
silbings = T->silbings;
/* -------------------------
set up the working arrays
------------------------- */
mymalloc(frontmap, nfronts, PORD_INT);
mymalloc(newncolfactor, nfronts, PORD_INT);
mymalloc(nzeros, nfronts, PORD_INT);
mymalloc(rep, nfronts, PORD_INT);
for (K = 0; K < nfronts; K++)
{ newncolfactor[K] = ncolfactor[K];
nzeros[K] = 0;
rep[K] = K;
}
/* -----------------------------------------------------
perform a postorder traversal of the elimination tree
----------------------------------------------------- */
for (K = firstPostorder(T); K != -1; K = nextPostorder(T, K))
if (firstchild[K] != -1)
{ ncolfrontK = newncolfactor[K] + ncolupdate[K];
Jall = 0;
cost = 0;
for (J = firstchild[K]; J != -1; J = silbings[J])
{ Jall += newncolfactor[J];
cost -= newncolfactor[J] * newncolfactor[J];
cost += 2*newncolfactor[J] * (ncolfrontK - ncolupdate[J]);
cost += 2*nzeros[J];
}
cost += Jall * Jall;
cost = cost / 2;
if (cost < maxzeros)
{ for (J = firstchild[K]; J != -1; J = silbings[J])
{ rep[J] = K;
newncolfactor[K] += newncolfactor[J];
}
nzeros[K] = cost;
}
}
/* ----------------------------------
construct frontmap from vector rep
---------------------------------- */
cnfronts = 0;
for (K = 0; K < nfronts; K++)
if (rep[K] == K)
frontmap[K] = cnfronts++;
else
{ for (J = K; rep[J] != J; J = rep[J]);
rep[K] = J;
}
for (K = 0; K < nfronts; K++)
if ((J = rep[K]) != K)
frontmap[K] = frontmap[J];
/* ------------------------------
construct new elimination tree
------------------------------ */
T2 = compressElimTree(T, frontmap, cnfronts);
/* ----------------------
free memory and return
---------------------- */
free(frontmap); free(newncolfactor);
free(nzeros); free(rep);
return(T2);
}
/*****************************************************************************
******************************************************************************/
elimtree_t*
compressElimTree(elimtree_t *T, PORD_INT *frontmap, PORD_INT cnfronts)
{ elimtree_t *T2;
PORD_INT *ncolfactor, *ncolupdate, *parent, *vtx2front;
PORD_INT nvtx, nfronts, u, K, pK, newfront, pnewfront;
nvtx = T->nvtx;
nfronts = T->nfronts;
ncolfactor = T->ncolfactor;
ncolupdate = T->ncolupdate;
parent = T->parent;
vtx2front = T->vtx2front;
/* --------------------------------------------
allocate memory for the new elimtree T2
and init. ncolfactor, ncolupdate, and parent
-------------------------------------------- */
T2 = newElimTree(nvtx, cnfronts);
for (K = 0; K < cnfronts; K++)
{ T2->ncolfactor[K] = T2->ncolupdate[K] = 0;
T2->parent[K] = -1;
}
/* --------------------------------------------------------------
set the new vectors T2->ncolfactor, T2->ncolupdate, T2->parent
-------------------------------------------------------------- */
for (K = 0; K < nfronts; K++)
{ newfront = frontmap[K];
T2->ncolfactor[newfront] += ncolfactor[K];
if (((pK = parent[K]) != -1)
&& ((pnewfront = frontmap[pK]) != newfront))
{ T2->parent[newfront] = pnewfront;
T2->ncolupdate[newfront] = ncolupdate[K];
}
}
/* ---------------------------------------------------
set the new vectors T2->firstchild and T2->silbings
--------------------------------------------------- */
initFchSilbRoot(T2);
/* ------------------------------------
set the the new vector T2->vtx2front
------------------------------------ */
for (u = 0; u < nvtx; u++)
T2->vtx2front[u] = frontmap[vtx2front[u]];
return(T2);
}
/*****************************************************************************
******************************************************************************/
PORD_INT
justifyFronts(elimtree_t *T)
{ PORD_INT *ncolfactor, *ncolupdate, *firstchild, *silbings, *minWspace, *list;
PORD_INT nfronts, K, ncolfrontK, frontsizeK, wspace, child, nxtchild;
PORD_INT count, m, s, i;
nfronts = T->nfronts;
ncolfactor = T->ncolfactor;
ncolupdate = T->ncolupdate;
firstchild = T->firstchild;
silbings = T->silbings;
/* -------------------------
set up the working arrays
------------------------- */
mymalloc(minWspace, nfronts, PORD_INT);
mymalloc(list, nfronts, PORD_INT);
/* ---------------------------------------------------------
postorder traversal of the elimination tree to obtain the
optimal justification of the children of each front
---------------------------------------------------------- */
wspace = 0;
for (K = firstPostorder(T); K != -1; K = nextPostorder(T, K))
{ ncolfrontK = ncolfactor[K] + ncolupdate[K];
frontsizeK = (ncolfrontK * (ncolfrontK + 1)) >> 1;
if ((child = firstchild[K]) == -1)
minWspace[K] = frontsizeK;
else
{ count = 0;
/* sort children according to their minWspace value */
while (child != -1)
{ list[count++] = child;
child = silbings[child];
}
insertUpIntsWithStaticIntKeys(count, list, minWspace);
firstchild[K] = -1;
for (i = 0; i < count; i++)
{ child = list[i];
silbings[child] = firstchild[K];
firstchild[K] = child;
}
/* compute minWspace[K] */
child = firstchild[K];
nxtchild = silbings[child];
m = s = minWspace[child];
while (nxtchild != -1)
{ s = s - minWspace[child]
+ ((ncolupdate[child] * (ncolupdate[child] + 1)) >> 1)
+ minWspace[nxtchild];
m = max(m, s);
child = nxtchild;
nxtchild = silbings[nxtchild];
}
s = s - minWspace[child]
+ ((ncolupdate[child] * (ncolupdate[child] + 1)) >> 1)
+ frontsizeK;
minWspace[K] = max(m, s);
}
wspace = max(wspace, minWspace[K]);
}
/* ----------------------
free memory and return
---------------------- */
free(minWspace); free(list);
return(wspace);
}
/*****************************************************************************
******************************************************************************/
PORD_INT
nWorkspace(elimtree_t *T)
{ PORD_INT *ncolfactor, *ncolupdate, *firstchild, *silbings, *minWspace;
PORD_INT nfronts, K, ncolfrontK, frontsizeK, wspace, child, nxtchild, m, s;
nfronts = T->nfronts;
ncolfactor = T->ncolfactor;
ncolupdate = T->ncolupdate;
firstchild = T->firstchild;
silbings = T->silbings;
/* -------------------------
set up the working arrays
------------------------- */
mymalloc(minWspace, nfronts, PORD_INT);
/* -------------------------------------------
postorder traversal of the elimination tree
------------------------------------------- */
wspace = 0;
for (K = firstPostorder(T); K != -1; K = nextPostorder(T, K))
{ ncolfrontK = ncolfactor[K] + ncolupdate[K];
frontsizeK = (ncolfrontK * (ncolfrontK + 1)) >> 1;
if ((child = firstchild[K]) == -1)
minWspace[K] = frontsizeK;
else
{ child = firstchild[K];
nxtchild = silbings[child];
m = s = minWspace[child];
while (nxtchild != -1)
{ s = s - minWspace[child]
+ ((ncolupdate[child] * (ncolupdate[child] + 1)) >> 1)
+ minWspace[nxtchild];
m = max(m, s);
child = nxtchild;
nxtchild = silbings[nxtchild];
}
s = s - minWspace[child]
+ ((ncolupdate[child] * (ncolupdate[child] + 1)) >> 1)
+ frontsizeK;
minWspace[K] = max(m, s);
}
wspace = max(wspace, minWspace[K]);
}
/* ----------------------
free memory and return
---------------------- */
free(minWspace);
return(wspace);
}
/*****************************************************************************
******************************************************************************/
PORD_INT
nFactorIndices(elimtree_t *T)
{ PORD_INT *ncolfactor, *ncolupdate;
PORD_INT nfronts, ind, K;
nfronts = T->nfronts;
ncolfactor = T->ncolfactor;
ncolupdate = T->ncolupdate;
ind = 0;
for (K = 0; K < nfronts; K++)
ind += (ncolfactor[K] + ncolupdate[K]);
return(ind);
}
/*****************************************************************************
******************************************************************************/
PORD_INT
nFactorEntries(elimtree_t *T)
{ PORD_INT *ncolfactor, *ncolupdate;
PORD_INT ent, tri, rec, K;
ncolfactor = T->ncolfactor;
ncolupdate = T->ncolupdate;
ent = 0;
for (K = firstPostorder(T); K != -1; K = nextPostorder(T, K))
{ tri = ncolfactor[K];
rec = ncolupdate[K];
ent += (tri * (tri+1)) / 2;
ent += (tri * rec);
}
return(ent);
}
/*****************************************************************************
******************************************************************************/
FLOAT
nFactorOps(elimtree_t *T)
{ PORD_INT *ncolfactor, *ncolupdate;
FLOAT ops, tri, rec;
PORD_INT K;
ncolfactor = T->ncolfactor;
ncolupdate = T->ncolupdate;
ops = 0.0;
for (K = firstPostorder(T); K != -1; K = nextPostorder(T, K))
{ tri = ncolfactor[K];
rec = ncolupdate[K];
ops += (tri*tri*tri) / 3.0 + (tri*tri) / 2.0 - (5*tri) / 6.0;
ops += (tri*tri*rec) + (rec*(rec+1)*tri);
}
return(ops);
}
/*****************************************************************************
******************************************************************************/
void
subtreeFactorOps(elimtree_t *T, FLOAT *ops)
{ PORD_INT *ncolfactor, *ncolupdate;
FLOAT tri, rec;
PORD_INT J, K;
ncolfactor = T->ncolfactor;
ncolupdate = T->ncolupdate;
for (K = firstPostorder(T); K != -1; K = nextPostorder(T, K))
{ tri = ncolfactor[K];
rec = ncolupdate[K];
ops[K] = (tri*tri*tri) / 3.0 + (tri*tri) / 2.0 - (5*tri) / 6.0;
ops[K] += (tri*tri*rec) + (rec*(rec+1)*tri);
for (J = T->firstchild[K]; J != -1; J = T->silbings[J])
ops[K] += ops[J];
}
}
/*****************************************************************************
******************************************************************************/
FLOAT
nTriangularOps(elimtree_t *T)
{ PORD_INT *ncolfactor, *ncolupdate;
FLOAT ops, tri, rec;
PORD_INT K;
ncolfactor = T->ncolfactor;
ncolupdate = T->ncolupdate;
ops = 0.0;
for (K = firstPostorder(T); K != -1; K = nextPostorder(T, K))
{ tri = ncolfactor[K];
rec = ncolupdate[K];
ops += (tri*tri) + 2.0*tri*rec; /* forward ops */
ops += (tri*tri) + 2.0*tri*rec; /* backward ops */
}
return(ops);
}
|