1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
!
! Spreaded profiles
!
!
! Copyright © 2016-2022 F.Hroch (hroch@physics.muni.cz)
!
! This file is part of Munipack.
!
! Munipack is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! Munipack is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with Munipack. If not, see <http://www.gnu.org/licenses/>.
!
module spray
implicit none
integer, parameter, private :: dbl = selected_real_kind(15)
integer, parameter, private :: defzoom = 2**4
real(dbl), parameter, private :: rad = 57.295779513082322865_dbl
real(dbl), parameter, private :: sqrt2 = sqrt(2.0)
type SprayType
integer :: zoom = defzoom
integer :: nbox
real(dbl), dimension(:,:), allocatable :: psf
contains
procedure :: Init, Pixelize, Load
procedure :: gauss, moffat, seeing, cseeing, fseeing
end type SprayType
private :: gauss, moffat, seeing, cseeing, fseeing, fill_gaussian, fill_bessel
contains
subroutine Init(this,profile,spread,hwhm,eccentricity,inclination, &
airy,beta)
class(SprayType) :: this
character(len=*), intent(in) :: profile, spread
real(dbl), intent(in) :: hwhm, airy, beta, eccentricity,inclination
if( profile == 'GAUSS' ) then
call this%gauss(hwhm,eccentricity,inclination)
else if( profile == 'MOFFAT' ) then
call this%moffat(hwhm,beta,eccentricity,inclination)
else ! if( profile == 'SEEING' ) then
if( spread == 'RANDOM' ) then
call this%seeing(hwhm,airy,eccentricity,inclination)
else if( spread == 'TEST' ) then
call this%cseeing(hwhm,airy,eccentricity,inclination)
else ! if (spread == 'FFT' ) then
call this%fseeing(hwhm,airy,eccentricity,inclination)
end if
end if
! normalisation
this%psf = this%psf * this%zoom**2 / sum(this%psf)
end subroutine Init
subroutine seeing(this,hwhm,airy,e,incl)
! The seeing is simulated by summing of Airy profiles with random
! offsets. The distribution of offsets is Gaussian N(0,hwhm).
! This method is very illustrative; it simulates the real process
! of an image generation. On the other side, it is slow for many
! iterations. It gives an asymmetric and randomly noised images.
use noise
integer, parameter :: maxiter = 5000
class(SprayType) :: this
real(dbl), intent(in) :: hwhm, airy, e,incl
real(dbl), dimension(:,:), allocatable :: bessel
integer :: n,m,i,j,iter,l1,l2,k1,k2
real(dbl) :: x,y,u,v,a,b,c,s,sig
this%nbox = nint(13*max(hwhm,1.0)*max(airy,5.0))
n = this%nbox*this%zoom
m = n / 2
allocate(this%psf(-n:n,-n:n),bessel(-m:m,-m:m))
! fill-up by Bessel
call fill_bessel(m,this%zoom*airy,bessel)
! spread the profile by random shifts with N(0,s)
sig = hwhm*this%zoom
a = sqrt2*sig
b = a*sqrt(1 - e**2)
c = cos(incl/rad)
s = sin(incl/rad)
this%psf = 0
do iter = 1, maxiter
u = gnoise(0.0_dbl,a)
v = gnoise(0.0_dbl,b)
x = u*c + v*s
y =-u*s + v*c
i = nint(x)
j = nint(y)
k1 = i - m
k2 = i + m
l1 = j - m
l2 = j + m
this%psf(k1:k2,l1:l2) = this%psf(k1:k2,l1:l2) + bessel
end do
deallocate(bessel)
end subroutine seeing
subroutine cseeing(this,hwhm,airy, e,incl)
! The seeing is simulated by convolution of Airy disk function and
! gaussian giving spread. The convolution is computed by direct
! sum, so by very slow way.
class(SprayType) :: this
real(dbl), intent(in) :: hwhm, airy, e,incl
real(dbl), dimension(:,:), allocatable :: bessel, kernel
integer :: n,m,i,j,k,l
real(dbl) :: s
this%nbox = nint(13*max(hwhm,1.0)*max(airy,5.0))
n = this%nbox*this%zoom
m = n / 2
allocate(this%psf(-n:n,-n:n),bessel(-m:m,-m:m),kernel(-n:n,-n:n))
! fill-up the Bessel intensity
call fill_bessel(m,this%zoom*airy,bessel)
! fill kernel
call fill_gaussian(m,this%zoom*hwhm,e,incl,kernel)
! spread profile by direct convolution
this%psf = 0
do i = -m,m
do j = -m,m
s = 0
do l = -m,m
do k = -m,m
s = s + bessel(k,l)*kernel(i-l,j-k)
end do
end do
this%psf(i,j) = s
end do
end do
deallocate(bessel,kernel)
end subroutine cseeing
subroutine fseeing(this,hwhm,airy,e,incl)
! The seeing is simulated by convolution of Airy disk function and
! gaussian giving spread. The convolution is computed by using
! os Fourier transformation. It is most fast and precise method.
use ftransform
class(SprayType) :: this
real(dbl), intent(in) :: hwhm, airy,e,incl
complex(dbl), dimension(:,:), allocatable :: bessel, kernel, qpsf, &
zbessel, zkernel, zpsf
real(dbl), dimension(:,:), allocatable :: rkernel, rbessel
integer :: n,m,n2
n = nint(13*max(hwhm,1.0)*max(airy,5.0))
m = int(log(real(n*this%zoom))/log(2.0) + 1) ! power o 2 for FFT
n = 2**m
this%nbox = n / this%zoom
n = this%nbox * this%zoom
n2 = n / 2
! fill-up Bessel
allocate(bessel(n,n),rbessel(-n2:n2,-n2:n2))
call fill_bessel(n2,this%zoom*airy,rbessel)
bessel = rbessel(-n2+1:n2,-n2+1:n2)
deallocate(rbessel)
! fill-up Gaussian spread
allocate(kernel(n,n),rkernel(-n2:n2,-n2:n2))
call fill_gaussian(n2,this%zoom*hwhm,e,incl,rkernel)
! conversion Complex to Real numbers
kernel = rkernel(-n2+1:n2,-n2+1:n2)
deallocate(rkernel)
! forward FFT
allocate(zbessel(n,n),zkernel(n,n))
call ftra(bessel,zbessel,m,1)
call ftra(kernel,zkernel,m,1)
deallocate(bessel,kernel)
! the convolution
allocate(zpsf(n,n),qpsf(n,n))
zpsf = zbessel * zkernel
! back FFT
call ftra(zpsf,qpsf,m,-1)
deallocate(zbessel,zkernel,zpsf)
! fill PSF by re-arranged quarters
allocate(this%psf(-n2+1:n2-1,-n2+1:n2-1))
this%psf = 0
this%psf( 0:n2-1, 0:n2-1) = real(qpsf(1:n2,1:n2))
this%psf(-n2+1:-1, 0:n2-1) = real(qpsf(n2+1:n-1,1:n2))
this%psf( 0:n2-1,-n2+1:-1) = real(qpsf(1:n2,n2+1:n-1))
this%psf(-n2+1:-1, -n2+1:-1) = real(qpsf(n2+1:n-1,n2+1:n-1))
deallocate(qpsf)
end subroutine fseeing
subroutine fill_bessel(m,sig,bessel)
integer, intent(in) :: m
real(dbl), intent(in) :: sig
real(dbl), dimension(-m:,-m:), intent(out) :: bessel
real(dbl) :: x,y,r
integer :: i,j
! fill-up the top-right quarter of Airy disk
do i = 0,m
x = i / sig
do j = 0,m
y = j / sig
! https://en.wikipedia.org/wiki/Airy_disk
if( i == 0 .and. j == 0 ) then
bessel(i,j) = 1
else
r = sqrt(x**2 + y**2)
bessel(i,j) = (bessel_j1(r)/r)**2
end if
end do
end do
! fill-up rest of the kernel
forall( i = -m:0, j = 0:m ) bessel(i,j) = bessel(-i,j)
forall( i = -m:m, j = -m:-1 ) bessel(i,j) = bessel(i,-j)
end subroutine fill_bessel
subroutine fill_gaussian(m,sig,e,incl,kernel)
integer, intent(in) :: m
real(dbl), intent(in) :: sig, e, incl
real(dbl), dimension(-m:,-m:), intent(out) :: kernel
real(dbl) :: x,y,a,b,c,s
integer :: i,j
a = sqrt2*sig
b = a*sqrt(1 - e**2)
c = cos(incl/rad)
s = sin(incl/rad)
do i = -m, m
do j = -m, m
x = ( i*c + j*s) / a
y = (-i*s + j*c) / b
kernel(i,j) = exp(-(x**2 + y**2))
end do
end do
end subroutine fill_gaussian
subroutine gauss(this,hwhm,e,incl)
class(SprayType) :: this
real(dbl), intent(in) :: hwhm, e, incl
integer :: n
this%nbox = nint(7*max(hwhm,1.0))
n = this%zoom * this%nbox
allocate(this%psf(-n:n,-n:n))
call fill_gaussian(n,this%zoom*hwhm,e,incl,this%psf)
end subroutine gauss
subroutine moffat(this, hwhm, beta, e,incl)
class(SprayType) :: this
real(dbl), intent(in) :: hwhm, beta, e, incl
real(dbl) :: a, b, c, s, x, y
integer :: i,j,n
this%nbox = nint(30*max(hwhm,1.0))
n = this%zoom * this%nbox
allocate(this%psf(-n:n,-n:n))
a = this%zoom * hwhm
b = a*sqrt(1 - e**2)
c = cos(incl/rad)
s = sin(incl/rad)
do i = -n, n
do j = -n, n
x = ( i*c + j*s) / a
y = (-i*s + j*c) / b
this%psf(i,j) = (1 + (x**2 + y**2))**(-beta)
end do
end do
end subroutine moffat
subroutine Pixelize(this,dx,dy,xpsf,n)
class(SprayType) :: this
real(dbl), intent(in) :: dx, dy
real(dbl), dimension(-n:n,-n:n), intent(out) :: xpsf
integer, intent(in) :: n
! The default lower dimension in subroutine is 1 (allocatable array?),
! we pass the dimensions which we needs.
integer :: x,y,k,l,i,j,k1,k2,l1,l2,m,m2,nmax,kk,ll
nmax = ubound(this%psf,1)
x = nint(this%zoom*dx)
y = nint(this%zoom*dy)
m = this%zoom
m2 = m / 2
xpsf = 0
do i = -n,n
k = i*m + x
k1 = max(k - m2,-nmax)
k2 = min(k + m2, nmax)
kk = k2 - k1 + 1
do j = -n,n
l = j*m + y
l1 = max(l - m2,-nmax)
l2 = min(l + m2, nmax)
ll = l2 - l1 + 1
if( kk > 0 .and. ll > 0 ) then
xpsf(i,j) = sum(this%psf(k1:k2,l1:l2)) / (kk*ll)
end if
end do
end do
end subroutine Pixelize
subroutine Load(this,filename)
use titsio
use iso_fortran_env
class(SprayType) :: this
character(len=*), intent(in) :: filename
type(fitsfiles) :: fits
integer :: naxis,status,n,n1,zoom
integer, dimension(2) :: naxes
character(len=FLEN_COMMENT) :: comment
logical :: anynull
status = 0
call fits_open_file(fits,filename,FITS_READONLY,status)
if( status == 0 ) then
call fits_get_img_dim(fits,naxis,status)
if( naxis /= 2 ) stop 'spray.Load(): PSF should by 2D image array.'
call fits_get_image_size(fits,naxes,status)
if( naxes(1) /= naxes(2) ) stop 'spray.Load(): PSF should be a square.'
call fits_read_key(fits,'ZOOM',zoom,comment,status)
if( status /= 0 .or. zoom < 1 ) stop 'spray.Load(): zoom undefined.'
n = naxes(1) / 2
n1 = naxes(1) - (n + 1)
allocate(this%psf(-n:n1,-n:n1))
this%nbox = n
this%zoom = zoom
call fits_read_image(fits,1,0.0_dbl,this%psf,anynull,status)
call fits_close_file(fits,status)
end if
call fits_report_error(error_unit,status)
if( status /= 0 ) stop 'spray.Load() failed to read a FITS file with PSF.'
end subroutine Load
end module spray
|