File: colorcal.html

package info (click to toggle)
munipack 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 33,104 kB
  • sloc: cpp: 29,677; sh: 4,909; f90: 2,872; makefile: 278; python: 140; xml: 72; awk: 12
file content (207 lines) | stat: -rw-r--r-- 5,612 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
<!DOCTYPE HTML>
<html lang="en">
<head>
<!-- meta -->
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="A general astronomical image processing software">
<meta name="author" content="Filip Hroch">
<link href="news_feed.xml" type="application/atom+xml" rel="alternate" title="Sitewide ATOM Feed" />
<link rel="stylesheet" href="munipack.css">
<link rel="shortcut icon" href="favicon.ico">
<title>Munipack ‒ Color Calibration Tutorial</title>
</head>
<body>
<header>
  <a href="munipack.html"><img src="big_logo.png" alt="Munipack's logo" class="head"></a>
  <div class="headtitles">
    <p class="head">
      <a class="headtitle" href="munipack.html">Munipack</a>
    </p>
    <p class="head">
      <a class="headsubtitle" href="munipack.html">The astronomical image processing software</a>
    </p>
  </div>
  <div class="buttons">
    <a href="guide.html" class="button">
      <div class="bicon">
	📘
      </div>
      <div class="hide">
	Guide
      </div>
    </a>
    <a href="docs.html" class="button">
      <div class="bicon">
	📁
      </div>
      <div class="hide">
	Documents
      </div>
    </a>
  </div>
</header>

<h1>Color Calibration of an Instrumental Photometric System</h1>

<p>
How to calibrate of an instrumental photometric system.
</p>

<h1>Open cluster M 67</h1>

<p>
Open cluster M 67 is an old galactic cluster with a differently
evolved stars which covers wide range of color indexes.
</p>

<p>
As the calibration stars, we are choose data
which has been carefully measured by Arne Henden
(<a href="http://binaries.boulder.swri.edu/binaries/fields/m67.html">M67 Standards Field</a>).
</p>


<h2>Sample Data</h2>

<p>
A sample data are available as
<a href="https://integral.physics.muni.cz/ftp/munipack/munipack-data-m67.tar.gz">munipack-data-m67.tar.gz</a>. Use commands
</p>
<pre>
$ cd /tmp
$ tar zxf munipack-data-m67.tar.gz
</pre>
<p>
to unpack it to a desired directory.
We will assume that the sample data are unpacked to <samp>/tmp</samp> directory
as <samp>/tmp/munipack-data-m67</samp>.
</p>



<h2>Photometry Calibration</h2>

<p>
The main goal of photometry calibration is
to determine relations between instrumental fluxes
(magnitudes) and fluxes (magnitudes) defined
by a photometric system (with conventionally defined
conditions, especially by transmission of filters).
</p>

<p>
General relations can by derived as an approximation
of a set of functions (instrumental filters) by another
set functions (standard filters) as a linear transformations.
A simple example is the calibration of instrumental
v-filter by a standard V-filter:
</p>
<p>
v - V = a + b*(V-R)
</p>
<p>
The goal is to determine coefficients <i>a,b</i> by a fit
of a linear function. The precision depends on coverage of
color index V-R and that is why we use the evolved cluster.
</p>


<h2>Data Processing</h2>

<p>
There is an algorithm to get data for the calibration.
</p>

<ol>
<li>Prepare images for photometric corrections as describes
<a href="phcorrtut.html">Photometric Corrections Tutorial</a>.</li>
<li>Stars detection and photometry
<pre>
$ munipack aphot M67_Green_*.fits
$ munipack aphot M67_Blue_*.fits
</pre>
</li>
<li>Search an astrometric catalogue (required for astrometric calibration)
<pre>
$ munipack cone -o m67cat.fits -r 0.1 132.75 11.8
</pre>
</li>
<li>Astrometry calibration of all images
<pre>
$ munipack astrometry -c m67cat.fits M67_*.fits
</pre>
</li>
<li>
Sum of all images
<pre>
$ munipack kombine -o M67_Blue.fits M67_Blue_*.fits
$ munipack kombine -o M67_Green.fits M67_Green_*.fits
</pre>
</li>
<li>Aperture photometry of final frames
<pre>
$ munipack aphot -f 6 M67_Blue.fits M67_Green.fits
</pre>
</li>
<li>
Preparation of results in tables
<pre>
$ munipack phframe --table -q IMAG --naperture 7 M67_Green.fits,M67_Green_res.fits
$ munipack phframe --table -q IMAG --naperture 7 M67_Blue.fits,M67_Blue_res.fits
</pre>
<p>
The file M67_Green_res.fits contains the table:
</p>
<div class="table">
<table>
<tr><th>α [J2000]</th><th>δ [J2000]</th><th>instrumental magnitude</th><th>std. deviation</th></tr>
<tr><td>132.8228301</td><td>11.7562805</td><td>7.62841</td><td>.00036</td></tr>
<tr><td>…</td><td>…</td><td>…</td><td></td></tr>
</table>
</div>
<p>
The output table can be matched against to a standard field stars in
equatorial coordinates. The calibration coefficients can be easy
determined by the way.
</p>
<p>
To match and visualize data, <a href="http://www.star.bris.ac.uk/~mbt/topcat/">topcat</a>
(part of Virtual Observatory software) can be recommended.
</p>
</li>
</ol>

<figure>
<img src="M67_Green-graph.png" alt="M67_Green-graph.png" title="M 67">
<figcaption>M 67 calibration</figcaption>
</figure>

<figure>
<img src="M67_Blue-graph.png" alt="M67_Blue-graph.png" title="M 67">
<figcaption>M 67 calibration</figcaption>
</figure>

<h2>Notes</h2>

<p>
This example is illustrative only! The instrumental
magnitudes are also affected by the atmospheric extinction
and to get correct values, we need to determine extra-atmospheric magnitudes
by observing of the field in different air masses and an extrapolation
on null air mass.
</p>

<p>
Please also don't be confused from filters designation and
graphs. The used filters are RGB photographic filters for a color
imaging. That's why the linear dependence doesn't exactly fit the data.
</p>

<footer>
  © 1997 – 2025
  <a href="https://integral.physics.muni.cz/" title="author's homepage"
   class="foot">Filip Hroch</a>
</footer>
</body>
</html>