File: dataform_photometry.html

package info (click to toggle)
munipack 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 33,104 kB
  • sloc: cpp: 29,677; sh: 4,909; f90: 2,872; makefile: 278; python: 140; xml: 72; awk: 12
file content (443 lines) | stat: -rw-r--r-- 16,916 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
<!DOCTYPE HTML>
<html lang="en">
<head>
<!-- meta -->
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="A general astronomical image processing software">
<meta name="author" content="Filip Hroch">
<link href="news_feed.xml" type="application/atom+xml" rel="alternate" title="Sitewide ATOM Feed" />
<link rel="stylesheet" href="munipack.css">
<link rel="shortcut icon" href="favicon.ico">
<title>Munipack ‒ Photometry Calibrated File</title>
</head>
<body>
<header>
  <a href="munipack.html"><img src="big_logo.png" alt="Munipack's logo" class="head"></a>
  <div class="headtitles">
    <p class="head">
      <a class="headtitle" href="munipack.html">Munipack</a>
    </p>
    <p class="head">
      <a class="headsubtitle" href="munipack.html">The astronomical image processing software</a>
    </p>
  </div>
  <div class="buttons">
    <a href="guide.html" class="button">
      <div class="bicon">
	📘
      </div>
      <div class="hide">
	Guide
      </div>
    </a>
    <a href="docs.html" class="button">
      <div class="bicon">
	📁
      </div>
      <div class="hide">
	Documents
      </div>
    </a>
  </div>
</header>
<section>

<h1 class="noindent">Photometry Calibrated File</h1>
<p class="abstract">
The description of a FITS file with fully calibrated data.
</p>

<p>
The file is result of run of <samp>munipack phcal</samp> action.
</p>

<p>
The specification has been created for internal use in Munipack.
Any backward compatibility is not guarantied.
</p>

<h2>Introduction</h2>

<p>
Raw frames contains an array of counts, the array of digitised
amount of electrical charges due to dropped photons. The detected signal
is proportional of quality of detector, area of telescope and fluency
of many additional things appears.
</p>

<p>
To by able to compare, the raw data, we needs combine observed
quantities with calibrated ones. The dirty job is provided by
<samp>phcal</samp> action. And results of calibration are stored
in this kind of FITS file.
</p>

<p>
Crucial properties:
</p>
<ul>
<li>The array of observed data is converted from counts to photons (or another
    physical quantity).</li>
<li>The quantities as additional tables are converted too.</li>
</ul>

<p>
Note that the calibration requires knowledge of both filter and photometric system.
</p>


<h2>Primary Array</h2>

<p>
The primary array has modified header with items:
</p>

<div class="table">
<table>
<caption><a href="http://www.stsci.edu/hst/HST_overview/documents/datahandbook/">Keywords compatible to HST</a> added by Photometry Calibration in primary image</caption>
<tr><th>Keyword</th><th>Description</th><th>Units</th></tr>
<tr><td>PHOTSYS</td><td>Photometric system</td><td></td></tr>
<tr><td>BUNITS</td><td>Physical units of array values, always 'photons'</td><td></td></tr>
<tr><td>PHOTFLAM</td><td>flux for 1 photon/s/cm2</td><td>erg/s/cm<sup>2</sup>/Å</td></tr>
<tr><td>PHOTZPT</td><td>magnitude zero-point for fluxes</td><td>erg/s/cm<sup>2</sup>/Å</td></tr>
<tr><td>PHOTPLAM</td><td>effective wavelength</td><td>Å</td></tr>
<tr><td>PHOTBW</td><td>passband FWHM</td><td>Å</td></tr>
</table>
</div>

<p>
All pixels of result image are converted to a required quantity.
</p>
<p>
The key conversion is from observed counts <i>c</i> to photons <i>n</i> (see BUNITS)
for every pixel in the image. For one-filter approximation, the relation
is used:
</p>
<p><i>n = r c</i></p>
<p>
where <i>r = 1/η</i> is photon to counts ratio.
<i>η</i> is coded in FITS header by CTPH keyword.
</p>

<p>
The conversion is more complicated in case of multi-filter observation.
Every pixel in a standard photometric system is computed as the linear
combination of pixels in an instrumental photometric on the same position.
This is main reason for creation of this kind of photometric calibration file.
</p>

<p>
The conversion from counts to photons will probably not visible on the first
sight due to algorithms used for scaling of high-range images, ones suppress
simple linear scaling in intensity.
</p>


<h2>Photometry Table</h2>

<p>
This PHOTOMETRY extension contains a photometry which would be used for
further processing.
</p>

<h3>Header Keywords</h3>

<div class="table">
<table>
<caption>Keywords</caption>
<tr><th>Keyword</th><th>Description</th><th>Units</th></tr>
<tr><td>EXTNAME</td><td>PHOTOMETRY as the identifier of this table</td><td></td></tr>
<tr><td>ORIGHDU</td><td>APERPHOT</td><td></td></tr>
<tr><td>APER</td><td>aperture radius<td>deg</td></tr>
<tr><td>ANNULUS1</td><td>inner sky annulus radius<td>deg</td></tr>
<tr><td>ANNULUS2</td><td>outer sky annulus radius<td>deg</td></tr>
<tr><td>CTPH</td><td>counts per photons<td></td></tr>
<tr><td>CTPHERR</td><td>Statistical Error of CTPH<td></td></tr>
<!--<tr><td>FWHM</td><td>standard FWHM of objects<td>pix</td></tr>-->
</table>
</div>

<p>
The parameters ANULLUSes an APER are directly copied from instrumental
table and with known astrometry calibration converted to degrees.
</p>

<p>
The photometry calibration is summarised in the comments
of this table.
</p>
<pre>
COMMENT === Photometric Calibration by Munipack ===
COMMENT Reference photometric sequence: UCAC5 Catalogue (Zacharias+, 2017)
COMMENT Number of objects used = 10
COMMENT Counts rate per photon rate =   1.1420     +-  7.9E-03
COMMENT Catalogue RA,DEC [deg]   Photons [ph/s/m2] Rate [cts/s/m2]   rel.err.
COMMENT   58.45428950   0.04279090    145.975E+03     59.052E+03       -0.00040
COMMENT   58.26729090   0.04719370     54.135E+03     21.358E+03        0.01220
COMMENT   58.36659530   0.10020920     25.089E+03     10.164E+03       -0.01539
COMMENT   58.32388300   0.07288640     20.058E+03      7.913E+03       -0.00444
COMMENT   58.32013680  -0.04973250      9.143E+03      3.632E+03       -0.03498
COMMENT   58.29327650  -0.11260250     13.611E+03      5.616E+03       -0.03224
COMMENT   58.38659270   0.07895420      5.104E+03      1.940E+03        0.01366
COMMENT   58.36115270  -0.04099480      4.532E+03      1.791E+03        0.00234
COMMENT   58.38704450   0.09433840      2.199E+03    810.295E+00        0.02770
COMMENT   58.28163680   0.01965840      3.141E+03      1.217E+03        0.01977
COMMENT Description: http://munipack.physics.muni.cz/dataform_photometry.html
COMMENT === End of Photometric Calibration by Munipack ===
</pre>

<p>
The table is designed likely of the <a href="dataform_astrometry.html">astrometry</a>
residual page. First and second
columns identifies calibration star, the third is photon flux in given filter
computed from catalogue magnitude of star, the fourth is counts rate
and last the ratio of [(3) - CTPH *(4)]/(3) as an analogy of residuals.
</p>

<h3>Table</h3>

<div class="table">
<table>
<caption>Photometry table of calibrated frame</caption>
<tr><th>Column</th><th>Description</th><th>unit</th></tr>
<tr><td>X</td><td>Horizontal coordinate</td><td>pix</td></tr>
<tr><td>Y</td><td>Vertical coordinate</td><td>pix</td></tr>
<tr><td>SKY</td><td>Mean sky level</td><td>photons per square arcsec</td></tr>
<tr><td>SKYERR</td><td>Statistical error of SKY</td><td>photons per square arcsec</td></tr>
<tr><td>PHOTON</td><td>Star photon count</td><td>photons</td></tr>
<tr><td>PHOTONERR</td><td>Statistical error of PHOTON</td><td>photons</td></tr>
</table>
</table>

<p>
The structure is perfectly same as structure of PHOTOMETRY
table in Processing file except that COUNTs are replaced by PHOTONs.
</p>



<h1 id="phquantities" >Available Photometric Quantities</h1>


<table>
<caption>Table of available photometry quantities for non-calibrated data</caption>
<tr><th>Quantity</th><th>Description</th><th>Units</th></tr>
<tr><td>COUNT<sup><a href="#count">[α]</a></sup></td><td>Counts <i>c</i></td><td>count</td></tr>
<tr><td>RATE<sup><a href="#rate">[β]</a></sup></td><td>Count rate</td><td>count/s/m<sup>2</sup></td></tr>
<tr><td>MAG<sup><a href="#imag">[γ]</a></sup></td><td>Instrumental magnitude <i>m</i></td><td></td></tr>
</table>

<div class="notes">
<p id="count">
<sup><a href="#count">[α]</a></sup>
Counts means number of detected electrons by captured photons. Ones are derived
from raw data <i>d</i><sub>n</sub> (data number (DN)) in relative units (ADU)
with help of gain <i>g</i> (photo-electrons per ADU): <i>c = g*d</i><sub>n</sub>.
</p>

<p id="rate">
<sup><a href="#rate">[β]</a></sup>
Counts rates are counts per area <i>A</i> of a detector per a time period <i>T</i>.
<i>A</i> is derived from AREA, <i>T</i> from EXPTIME header keyword
as <i>c/(A T)</i>.
</p>

<p id="imag">
<sup><a href="#imag">[γ]</a></sup>
Instrumental magnitudes are derived from rates. Theirs shift
against to right magnitudes is given by optical system attenuation.
Magnitudes are derived as <i>m</i> = 25 - 2.5 log<sub>10</sub> <i>c/(A T)</i>.
Note, that an instrumental shift has been chooses as 1 cts/s/m<sup>2</sup>
for magnitude 25 (see -2.5 log<sub>10</sub> 10<sup>-10</sup>).
</p>
</div>

<div class="table">
<table>
<caption>Table of available photometry quantities for fully calibrated data</caption>
<tr><th>Quantity</th><th>Description</th><th>Units</th></tr>
<tr><td>PHOTON<sup><a href="#photon">[a]</a></sup></td><td>Photon counts <i>n</i></td><td>photon</td></tr>
<tr><td></td><td>Photon flux <i>Φ</i></td><td>ph/s/m<sup>2</sup></td></tr>
<tr><td>PHOTNU<sup><a href="#photnu">[b]</a></sup></td><td>Photon rate per frequency n<sub>ν</sub></td><td>ph/m<sup>2</sup>/Hz</td></tr>
<tr><td>PHOTLAM<sup><a href="#photlam">[c]</a></sup></td><td>Photon rate per wavelength n<sub>λ</sub></td><td>ph/m<sup>2</sup>/nm</td></tr>
<tr><td>FLUX<sup><a href="#flux">[d]</a></sup></td><td>Energy flux in a band <i>f</i></td><td>W/m<sup>2</sup></td></tr>
<tr><td>FNU<sup><a href="#fnu">[e]</a></sup></td><td>Energy density flux per frequency <i>f</i><sub>ν</sub></td><td>W/m<sup>2</sup>/Hz</td></tr>
<tr><td>FLAM<sup><a href="#flam">[f]</a></sup></td><td>Energy density flux per wavelength <i>f</i><sub>λ</sub></td><td>W/m<sup>2</sup>/nm</td></tr>
<tr><td>MAG<sup><a href="#mag">[g]</a></sup></td><td>Magnitude <i>m</i></td><td></td></tr>
<tr><td>ABMAG<sup><a href="#abmag">[h]</a></sup></td><td>Magnitude per 1 Hz of frequency <i>m</i><sub>AB</sub></td><td></td></tr>
<tr><td>STMAG<sup><a href="#stmag">[ch]</a></sup></td><td>Magnitude per 1 nm of wavelength <i>m</i><sub>ST</sub></td><td></td></tr>
</table>
</div>

<div class="notes">
<p id="photon">
<sup><a href="#photon">[a]</a></sup>
Photon count <i>n</i> and photon flux <i>Φ</i> are the core of calibration.
The fitting routines estimates ratio of detected <i>c</i> and expected
<i>n</i> photons and derive quantity (efficiency by mean) <i>η = c / n</i>
(0 ≤ <i>η</i> ≤ 1). The typical values are between
0.1 — 0.5. The <i>η</i>  is included in header keywords as CTPH and its
dispersion as CTPHERR. Photon count is derived from original data as
<i>n = c / η</i>.
The reference photon count in a band <i>B</i> is derived from a known (catalogue)
star magnitude <i>m<sub>B</sub></i><br>
<i>Φ = (f<sub>νB</sub> Δν<sub>B</sub> / h ν<sub>B</sub>) 10<sup>-0.4 m</sup>  =
(f<sub>λB</sub> Δλ<sub>B</sub>) (h c / λ<sub>B</sub>) 10<sup>-0.4 m</sup></i>,<br>
where <i>f<sub>νB</sub></i> and
<i>Δν<sub>B</sub></i> are spectral density flux and passband FWHM (in this order)
defined by <a href="dataform_photosys.html">photometry system</a>.
Count of photons is <i>n = Φ A T</i>.
Note that product <i>f<sub>νB</sub> Δν<sub>B</sub></i> has meaning of
energy flux and <i>h ν<sub>B</sub></i> is the mean
energy of photon in the given band.<br>
The photon flux is also frequently is used quantity defined as <i>ϕ = n / A T</i>.

<p id="photnu">
<sup><a href="#photnu">[b]</a></sup>
Photon rate per unit frequency defined as
<i>n<sub>ν</sub> = n / Δν</i>.
</p>

<p id="photlam">
<sup><a href="#photlam">[c]</a></sup>
Photon rate per 1nm of  wavelenght defined as
<i>n<sub>λ</sub> = n Δλ c / λ</i><sub>eff</sub><sup>2</sup>.
</p>

<p id="flux">
<sup><a href="#flux">[d]</a></sup>
Energy flux in given band (filter) defined as
<i>F = ϕ h ν</i><sub>eff</sub><i> = ϕ h Δλ c / λ</i><sub>eff</sub><sup>2</sup>.
</p>

<p id="fnu">
<sup><a href="#fnu">[e]</a></sup>
Spectral energy flux density per unit frequency defined as
<i>f<sub>ν</sub> = ϕ<sub>ν</sub> h ν</i><sub>eff</sub><i>
                 = ϕ h ν</i><sub>eff</sub><i> / Δν</i>.
</p>

<p id="flam">
<sup><a href="#flam">[f]</a></sup>
Spectral energy flux density per 1nm of wavelength defined as
<i>f<sub>λ</sub> = ϕ<sub>λ</sub> Δλ c / λ</i><sup>2</sup><sub>eff</sub><i>
                 = ϕ h c / λ</i><sup>2</sup><sub>eff</sub><i> /</i> 10<sup>-9</sup>.
</p>

<p id="mag">
<sup><a href="#mag">[g]</a></sup>
Magnitudes in the given filter are computed as
<i>m</i> = -2.5 log<sub>10</sub> <i>F / (f<sub>0ν</sub> Δν)</i> =
           -2.5 log<sub>10</sub> <i>F / (f<sub>0λ</sub> Δλ)</i>.
Undefined values are marked 99.999.
</p>

<p id="abmag">
<sup><a href="#abmag">[h]</a></sup>
Magnitudes in the given filter are computed as
<i>m</i> = -2.5 log<sub>10</sub> <i>f<sub>ν</sub> / f<sub>AB</sub></i>,
where <i>f</i><sub>AB</sub> = 3.631 .10<sup>-23</sup> [W/m2/Hz] is
spectral flux density for star of magnitude zero in V (545nm) band for AB system.
Undefined values are marked 99.999.
</p>

<p id="stmag">
<sup><a href="#stmag">[ch]</a></sup>
Magnitudes in the given filter are computed as
<i>m</i> = -2.5 log<sub>10</sub> <i>f<sub>λ</sub> / f<sub>ST</sub></i>,
where <i>f</i><sub>ST</sub> = 3.6335 .10<sup>-10</sup> [W/m2/nm] is
spectral flux density for star of magnitude zero in V (545nm) band for ST system.
Undefined values are marked 99.999.
</p>
</div>

<div class="table">
<table>
<caption>Photometry table for fully calibrated data</caption>
<tr><th>Column</th><th>Description</th><th>units</th></tr>
<tr><td>RA</td><td>Right Ascension</td><td>deg</td></tr>
<tr><td>DEC</td><td>Declination</td><td>deg</td></tr>
<tr><td>SKY</td><td>Sky intensity</td><td><sup><a href="#usky">[-]</a></sup></td></tr>
<tr><td>SKYERR</td><td>Sky intensity error</td><td><sup><a href="#usky">[-]</a></sup></td></tr>
<tr><td>Q</td><td>A selected quantity<sup><a href="#uq">[+]</a></sup></td><td></td></tr>
<tr><td>QERR</td><td>The quantity standard error<sup><a href="#uq">[+]</a></sup></td><td></td></tr>
</table>
</div>

<p>
Note that for fully calibrated data, keywords TUNITn are presented in the
header.
</p>

<div class="notes">
<p id="usky">
<sup><a href="#usky">[-]</a></sup>
Units of sky intensity are the same as quantity Q, but, in addition,
they are related to the cone 1 arcsec<sup>2</sup>.
</p>

<p id="uq">
<sup><a href="#uq">[+]</a></sup>
There is many of possible related quantities, which can be directly
derived from calibrated photons.
</p>
</div>



<h2>Magnitudes Are Considered As Obsolete</h2>
<p>
Please, have in mind.
The photometry calibration is designed for a photon counting detector, eg.
a device that can detect an incoming single photon. CCD, CMOS and
many modern detectors are that photon counting devices. Ones are extremely sensitive
with linear response. The calibration naturally take the advantage.
</p>

<p>
The magnitude scale is considered as obsolete in this framework and
provided just for backward compatibility.
This approach for the photometry has many advantages for modern
astronomy  for following reasons:
</p>
<ul>
<li>Simple, physical and powerful mind framework which is compatible
with astronomical photometry in non-optical bands.</li>
<li>There is new point of view onto many of classical astronomy problems, as light
attenuation in a media like Earth's atmosphere or the interstellar extinction.</li>
<li>
Magnitudes are used just only by optical astronomers and the data
are difficult to compare and understand for non-optical astronomers.</li>
<li>
Moreover, all modern detectors (photo-multiplier tube, CCD, ...) are strictly
linear, not logarithmic as human eye is supposed (note that modern
measurements of eye response shows dependency of response on flux
as ∝flux<sup>1/3</sup> in limited light ranges of modern digital devices
(<a href="https://en.wikipedia.org/wiki/CIELUV">CIE 1976 (L*, u*, v*) colour space</a>).
</li>
<li>A relative photometry (differential magnitudes) can be easy replaced
    by ratio of fluxes (intensities).</li>
<li>An easy manipulation with wide range data can be replaced by (decadic)
    logarithm over creepy  2.5*log<sub>10</sub>.</li>
<li>The normalised photon flux can be mutually converted to
spectral (density) fluxes (or intensities).</li>
</ul>




<h2>See Also</h2>
<p>
<a href="man_aphot.html">Aperture Photometry</a>,
<a href="man_phcal.html">Photometry Calibration</a>
</p>

</section>
<footer>
  © 1997 – 2025
  <a href="https://integral.physics.muni.cz/" title="author's homepage"
   class="foot">Filip Hroch</a>
</footer>
</body>
</html>