File: minpacks.f95

package info (click to toggle)
munipack 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 33,104 kB
  • sloc: cpp: 29,677; sh: 4,909; f90: 2,872; makefile: 278; python: 140; xml: 72; awk: 12
file content (420 lines) | stat: -rw-r--r-- 12,145 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
!
!  Fortran 95+ Minpack module
!
!  Copyright © 2013-8 F.Hroch (hroch@physics.muni.cz)
!
!  This file is part of Munipack.
!
!  Munipack is free software: you can redistribute it and/or modify
!  it under the terms of the GNU General Public License as published by
!  the Free Software Foundation, either version 3 of the License, or
!  (at your option) any later version.
!
!  Munipack is distributed in the hope that it will be useful,
!  but WITHOUT ANY WARRANTY; without even the implied warranty of
!  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!  GNU General Public License for more details.
!
!  You should have received a copy of the GNU General Public License
!  along with Munipack.  If not, see <http://www.gnu.org/licenses/>.
!
!
!  This module implements:
!
!    * Fotran 90+ interfaces for original Minpack routines
!    * Simplified wrappers to original functions
!    * Add-ons: a linear equations solver, the inverse matrix routine
!
!  Adaptations:
!
!  * Power of modern Fortran is utilised: Dimensions of arrays are no more
!    required as arguments, working arrays are created transparently.
!
!  * Tolerance limits are set for maximal accuracy (should be slower).
!
!  * Only principal parameters of routines are visible.
!
!  * Added the convenience functions:
!    qrsolve - a solver of linear systems equations
!    qrinv - an inverse matrix routine
!
!    These are implemented via QR factorised matrix, so they will
!    no fail for a singular matrix; the approach is equivalent to SVD.
!
!  Notes:
!
!  * While the original Minpack's function covar.f is not available in all
!    distribution packages (perhaps, due to some mess), I cancel its support.
!

module minpacks

  implicit none

  ! precision for double real
  integer, parameter, private :: dbl = selected_real_kind(15)

contains


  subroutine lmdif2(fcn,x,tol,nprint,info)

    integer, intent(out) :: nprint
    integer, intent(out) :: info
    real(dbl), intent(in) :: tol
    real(dbl), dimension(:), intent(in out) :: x

    interface
       subroutine fcn(m,n,x,fvec,iflag)
         integer, parameter :: dbl = selected_real_kind(15)
         integer, intent(in) :: n, m
         integer, intent(in out) :: iflag
         real(dbl), dimension(m), intent(in) :: x
         real(dbl), dimension(n), intent(out) :: fvec
       end subroutine fcn
    end interface

    real(dbl), dimension(size(x)) :: fvec,qtf,wa1,wa2,wa3,wa4,diag
    real(dbl), dimension(size(x),size(x)) :: fjac
    integer, dimension(size(x)) :: ipvt
    real(dbl) :: xtol,ftol, gtol
    integer :: npar,nfev,maxfev

    npar = size(x)
    ftol = tol
    xtol = tol
    gtol = epsilon(gtol)
    maxfev = 200*(npar+1)

    call lmdif(fcn,npar,npar,x,fvec,ftol,xtol,gtol,maxfev,epsilon(0.0_dbl), &
         diag,1,100.0_dbl,nprint,info,nfev,fjac,npar,ipvt,qtf,wa1,wa2,wa3,wa4)

  end subroutine lmdif2


  subroutine lmdif3(fcn,x,cov,tol,nprint,info)

    real(dbl), dimension(:), intent(in out) :: x
    real(dbl), dimension(:,:), intent(out), optional :: cov
    real(dbl), intent(in), optional :: tol
    integer, intent(in), optional :: nprint
    integer, intent(out), optional :: info

    interface
       subroutine fcn(m,n,x,fvec,iflag)
         integer, parameter :: dbl = selected_real_kind(15)
         integer, intent(in) :: n, m
         integer, intent(in out) :: iflag
         real(dbl), dimension(m), intent(in) :: x
         real(dbl), dimension(n), intent(out) :: fvec
       end subroutine fcn
    end interface

    real(dbl), dimension(size(x)) :: fvec,qtf,wa1,wa2,wa3,wa4,diag
    real(dbl), dimension(size(x),size(x)) :: fjac
    integer, dimension(size(x)) :: ipvt
    real(dbl) :: xtol,ftol, gtol,factor,epsfcn
    integer :: npar,nfev,maxfev,nprints, infos,mode, iflag

    npar = size(x)
    if( present(tol) ) then
       ftol = tol
       xtol = tol
    else
       ftol = epsilon(ftol)
       xtol = ftol
    end if
    gtol = 0.0_dbl
    epsfcn = 0.0_dbl
    maxfev = 200*(npar+1)
    factor = 100
    mode = 1
    if( present(nprint) ) then
       nprints = nprint
    else
       nprints = 0
    end if

    call lmdif(fcn,npar,npar,x,fvec,ftol,xtol,gtol,maxfev,epsfcn, &
         diag,mode,factor,nprints,infos,nfev,fjac,npar,ipvt,qtf,wa1,wa2,wa3,wa4)

    if( present(cov) )then
       iflag = 2
       call fdjac2(fcn,npar,npar,x,fvec,fjac,npar,iflag,epsfcn,wa4)
       call qrinv(fjac,cov)
    end if

    if( present(info) ) info = infos

  end subroutine lmdif3


  subroutine lmder2(fcn,x,tol,nprint,info)

    integer, intent(out) :: nprint
    integer, intent(out) :: info
    real(dbl), intent(in) :: tol
    real(dbl), dimension(:), intent(in out) :: x

    interface
       subroutine fcn(m,n,x,fvec,fjac,ldfjac,iflag)
         integer, parameter :: dbl = selected_real_kind(15)
         integer, intent(in) :: n, m, ldfjac
         integer, intent(in out) :: iflag
         real(dbl), dimension(n), intent(in) :: x
         real(dbl), dimension(m), intent(out) :: fvec
         real(dbl), dimension(ldfjac,n), intent(out) :: fjac
       end subroutine fcn
    end interface

    real(dbl), dimension(size(x)) :: fvec,qtf,wa1,wa2,wa3,wa4,diag
    real(dbl), dimension(size(x),size(x)) :: fjac
    integer, dimension(size(x)) :: ipvt
    real(dbl) :: xtol,ftol, gtol
    integer :: npar,nfev,njev,maxfev

    npar = size(x)
    ftol = tol
    xtol = tol
    gtol = epsilon(gtol)
    maxfev = 200*(npar+1)

    call lmder(fcn,npar,npar,x,fvec,fjac,npar,ftol,xtol,gtol,maxfev, &
         diag,1,100.0_dbl,nprint,info,nfev,njev,ipvt,qtf,wa1,wa2,wa3,wa4)

  end subroutine lmder2

  subroutine lmder3(fcn,x,cov,tol,nprint,info)

    real(dbl), dimension(:), intent(in out) :: x
    real(dbl), dimension(:,:), optional, intent(out) :: cov
    real(dbl), optional, intent(in) :: tol
    integer, optional, intent(in) :: nprint
    integer, optional, intent(out) :: info

    interface
       subroutine fcn(m,n,x,fvec,fjac,ldfjac,iflag)
         integer, parameter :: dbl = selected_real_kind(15)
         integer, intent(in) :: n, m, ldfjac
         integer, intent(in out) :: iflag
         real(dbl), dimension(n), intent(in) :: x
         real(dbl), dimension(m), intent(out) :: fvec
         real(dbl), dimension(ldfjac,n), intent(out) :: fjac
       end subroutine fcn
    end interface

    real(dbl), dimension(size(x)) :: fvec,qtf,wa1,wa2,wa3,wa4,diag
    real(dbl), dimension(size(x),size(x)) :: fjac
    integer, dimension(size(x)) :: ipvt
    real(dbl) :: xtol,ftol, gtol, factor
    integer :: npar,nfev,njev,maxfev,iflag,infos,nprints,mode

    npar = size(x)
    if( present(tol) ) then
       ftol = tol
       xtol = tol
    else
       ftol = epsilon(ftol)
       xtol = ftol
    end if
    gtol = 0.0_dbl
    factor = 100
    maxfev = 100*(npar+1)
    infos = 0
    mode = 1

    if( present(nprint) ) then
       nprints = nprint
    else
       nprints = 0
    end if

    call lmder(fcn,npar,npar,x,fvec,fjac,npar,ftol,xtol,gtol,maxfev, &
         diag,mode,factor,nprints,infos,nfev,njev,ipvt,qtf,wa1,wa2,wa3,wa4)

    if( present(cov) ) then
       iflag = 2
       call fcn(npar,npar,x,fvec,fjac,npar,iflag)
       call qrinv(fjac,cov)
    end if

    if( present(info) ) info = infos

  end subroutine lmder3


  ! Functions hybr[d,j]2 are currently unused,
  ! because Levendberg-Marquart (lm*2) provides the regularised way).
  subroutine hybrd2(fcn,x,info)

    integer, intent(out) :: info
    real(dbl), dimension(:), intent(in out) :: x

    interface
       subroutine fcn(n,x,fvec,iflag)
         integer, parameter :: dbl = selected_real_kind(15)
         integer, intent(in) :: n
         integer, intent(in out) :: iflag
         real(dbl), dimension(n), intent(in) :: x
         real(dbl), dimension(n), intent(out) :: fvec
       end subroutine fcn
    end interface

    real(dbl), dimension(size(x)) :: fvec,qtf,wa1,wa2,wa3,wa4,diag
    real(dbl), dimension(size(x),size(x)) :: fjac
    real(dbl), dimension(size(x)**2) :: xr
    real(dbl) :: xtol
    integer :: npar,nfev,maxfev

    npar = size(x)
    xtol = epsilon(x)
    maxfev = 200*(npar+1)

    call hybrd(fcn,npar,x,fvec,xtol,maxfev,npar-1,npar-1,0.0_dbl, &
         diag,1,100.0_dbl,1,info,nfev,fjac,npar,xr,size(xr),qtf,wa1,wa2,wa3,wa4)

  end subroutine hybrd2


  subroutine hybrj2(fcn,x,info)

    integer, intent(out) :: info
    real(dbl), dimension(:), intent(in out) :: x

    interface
       subroutine fcn(n,x,fvec,fjac,ldfjac,iflag)
         integer, parameter :: dbl = selected_real_kind(15)
         integer, intent(in) :: n, ldfjac
         integer, intent(in out) :: iflag
         real(dbl), dimension(n), intent(in) :: x
         real(dbl), dimension(n), intent(out) :: fvec
         real(dbl), dimension(ldfjac,n), intent(out) :: fjac
       end subroutine fcn
    end interface

    real(dbl), dimension(size(x)) :: fvec,qtf,wa1,wa2,wa3,wa4,diag
    real(dbl), dimension(size(x),size(x)) :: fjac
    real(dbl), dimension((size(x)*(size(x)+1))/2) :: xr
    real(dbl) :: xtol
    integer :: npar,nfev,njev,maxfev

    npar = size(x)
    xtol = epsilon(x)
    maxfev = 200*(npar+1)

    call hybrj(fcn,npar,x,fvec,fjac,npar,xtol,maxfev, &
         diag,1,100.0_dbl,1,info,nfev,njev,xr,size(xr),qtf,wa1,wa2,wa3,wa4)

  end subroutine hybrj2


! ----------------------------------------------------------------------
!
!


  subroutine qrsolve(a,b,x)

    real(dbl), dimension(:,:), intent(in) :: a
    real(dbl), dimension(:), intent(in) :: b
    real(dbl), dimension(:), intent(out) :: x

    integer :: m,n,i
    real(dbl), dimension(size(a,1),size(a,2)) :: r, q
    integer, dimension(size(a,1)) :: ipvt
    real(dbl), dimension(size(a,2)) :: rdiag,wa,qtb,diag

    m = size(a,1)
    n = size(a,2)

    ! form the r matrix, r is upper trinagle (without diagonal)
    ! of the factorized a, diagonal is presented in rdiag
    q = a
    call qrfac(m,n,q,m,.true.,ipvt,n,rdiag,diag,wa)

!    write(*,*) 'qrfac:',q,rdiag,diag,ipvt

    ! form R, upper triangular
    r = q
    forall( i = 1:n ) r(i,i) = rdiag(i)

    ! form Q orthogonal matrix
    call qform(m,n,q,m,wa)
    qtb = matmul(transpose(q),b)

    ! accurate up to machine epsilon
    diag = diag*epsilon(diag)    ! lmpar.f:206,

    call qrsolv(n,r,m,ipvt,diag,qtb,x,rdiag,wa)

  end subroutine qrsolve


  subroutine qrinv(a,ainv)

    ! Compute inverse matrix in least-square sense by the use
    ! of the QR factorization. An efficiency does not matter.
    ! A singular matrix check is implemented.
    !
    ! http://en.wikipedia.org/wiki/QR_decomposition
    !     - see: "Solution of inverse problems"

    implicit none

    real(dbl), dimension(:,:), intent(in) :: a
    real(dbl), dimension(:,:), intent(out) :: ainv

    integer :: m,n,i,j
    real(dbl), dimension(size(a,1),size(a,2)) :: r, q
    integer, dimension(size(a,1)) :: ipvt
    real(dbl), dimension(size(a,1)) :: rdiag,acnorm,wa,x,b

    m = size(a,1)
    n = size(a,2)

    ! form the r matrix, r is upper triangle (without diagonal)
    ! of the factorized a, its diagonal is stored in rdiag
    q = transpose(a)
    call qrfac(m,n,q,m,.false.,ipvt,n,rdiag,acnorm,wa)

!    write(*,*) 'qrfac:',q,rdiag,ipvt

    ! form R, upper triangular
    r = q
    forall( i = 1:n ) r(i,i) = rdiag(i)

    ! form Q orthogonal matrix
    call qform(m,n,q,n,wa)

!    do i = 1,n
!       write(*,'(a,4f15.7)') 'q:',q(i,:)
!    end do
!    do i = 1,n
!       write(*,'(a,4f15.7)') 'r:',r(i,:)
!    end do

    ! determine the inverse matrix by substitution
    do i = 1, n
       b = 0.0_dbl
       b(i) = 1.0_dbl

       ! forward subtitution with checking on singular values
       ! (for overdetermined problem, the inverse matrix has
       ! set elements to zero when no inverse is possible).
       ! We assumes: no element index like x(1:0) is acceptable.
       do j = 1,n
          if( abs(r(j,j)) > epsilon(r) ) then
             x(j) = (b(j) - sum(x(1:j-1)*r(1:j-1,j))) / r(j,j)
          else
             x(j) = 0.0_dbl
          end if
       end do
       ainv(:,i) = matmul(q,x)
    end do

!    write(*,*) 'ainv:',ainv

  end subroutine qrinv


end module minpacks