1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
|
!
! PHOTOMETRY, aperture photometry
! Copyright (C) 1997-9,2010,2013-19 Filip Hroch, Masaryk University
! Copyright (C) 1991 P.B. Stetson, Dominon Astrophysical Observatory
!
!
! This file is part of Munipack.
!
! Credits
!
! Almost all this source is authored by P. B. Stetson.
! I adapted it for Fortran 90 (allocatable arrays, precision,
! array syntax), corrected errors, improve sky estimate by
! variance stabilising estimator, elliptic aperture.
!
!
! Munipack is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! Munipack is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with Munipack. If not, see <http://www.gnu.org/licenses/>.
!
!
!===================================================================
!
! 2019: I did complete revision of the source. The various obsolete
! parts has been removed: input by hand, output for every star
! (but output for program to program has been added). Both
! elliptic and testing estimators of edge fraction has been included.
! The code has been improved by latest computer development
! and my development of robust estimators and photometry in counts.
! I tried to keep Stetson's programming spirit and conventions.
module daofotometr
integer, parameter, private :: dbl = selected_real_kind(14)
private :: circfrac, sqcover
contains
subroutine daophotsb (d,derr,xstar,ystar,raper,ring,ecc,incl,lobad,hibad,&
verbose,plog,apcts,apcts_err,skystar,skystar_err)
use iso_fortran_env
use oakleaf
implicit none
real, dimension(:,:), intent(in) :: d,derr
real, dimension(:), intent(in) :: xstar, ystar, raper,ring
real, dimension(:,:), intent(out) :: apcts,apcts_err
real, dimension(:), intent(out) :: skystar,skystar_err
real, intent(in) :: lobad, hibad, ecc, incl
logical, intent(in) :: verbose, plog
!
!=======================================================================
!
! This subroutine derives the concentric aperture photometry. At
! present, this is the only place in all of DAOPHOT where sky values
! are derived for the individual stars.
!
! OFFICIAL DAO VERSION: 1991 April 18
!
! Argument
!
! WATCH (INPUT) governs whether information relating to the progress
! of the reductions is to be typed on the terminal screen
! during execution.
!
!=======================================================================
!
integer, parameter :: minsky = 7!, maxap = 12
real, parameter :: pi = 3.141592653589793115997963
real, parameter :: rad = 57.295779513082322865
! It's expected that all data are already properly scaled by the gain.
real, parameter :: phpadu = 1.0
!
! Parameters:
!
! MINSKY is the smallest number of pixels from which the sky may be
! determined. If for some star the number of sky pixels
! is less than MINSKY, an error code will result and
! control will return to the main program.
!
! MAXSKY the maximum number of pixels allowed in the sky annulus.
! This and the user's requested inner sky radius will later
! determine the maximum permitted outer sky radius.
!
! MAXAP the maximum number of star apertures allowed.
!
real(dbl), dimension(size(raper)) :: area, apsum
real, dimension(:), allocatable :: sky, dsky
real, dimension(3) :: error
real :: skymod, skysig, sigsq, skyvar, skyerr, datum, r, rsq, fractn, &
edge, apmxsq, rout, dysq, xc, yc, e,c,s,sqrte,u,v,x,y,phi,q,rin
integer :: i, j, k, n, naper, nstar, lx, ly, nx, ny, mx, my, &
nsky, ncol, nrow, iflag
skystar = -1
skystar_err = -1
apcts = -1
apcts_err = -1
ncol = size(d,1)
nrow = size(d,2)
naper = size(raper)
nstar = size(xstar)
!-----------------------------------------------------------------------
!
! SECTION 1
!
! Ascertain the name of the aperture photometry parameter table, and
! read it in. Then set up all necessary variables for the forthcoming
! reductions. Finally, identify and open the input and output files.
!
do i = 2, naper
if( raper(i) < raper(i-1) ) &
stop "Error in APHOT: some aperture radius is invalid."
end do
apmxsq = -1.0
do i = 1, naper
apmxsq = max(apmxsq, (raper(i)+0.5)**2)
end do
!
! sky buffers allocation
!
nsky = int(max(pi*((ring(2)+1)**2 - ring(1)**2),1.5))
allocate(sky(nsky),dsky(nsky))
!
! NAPER is the number of apertures, whose radii are stored in
! elements 1 through NAPER of the array PAR.
!
! APMXSQ is the outermost edge of the largest aperture-- if the
! distance squared of the center of a pixel from the centroid of
! the star is greater than APMXSQ, then we know that no part
! of the pixel is to be included in any aperture.
!
! Now define the other variables whose values are in the table.
!
if( ring(1) >= ring(2) ) &
stop "Error in APHOT: invalid sky ring radius."
rin = ring(1)
rout = ring(2)
! If progress is being monitored, type out column headers.
!
! if (watch > 0.5) &
! if( verbose ) &
! write (*,"(/13X, 'STAR', 5X, 'X', 7X, 'Y', 9X, 'MAG.(1)', 8X, 'SKY')")
!
!-----------------------------------------------------------------------
!
! SECTION 2
!
! Derive aperture photometry object by object.
!
! Get the coordinates of next object to be measured.
!
lx = 1
ly = 1
nx = ncol
ny = nrow
e = ecc
c = cos(incl/rad)
s = sin(incl/rad)
sqrte = sqrt(1 - e**2)
do n = 1, nstar
xc = xstar(n)
yc = ystar(n)
! istar = n
!
! Compute the limits of the submatrix.
!
lx = max(1, int(xc-rout)+1)
mx = min(ncol, int(xc+rout))
ly = max(1, int(yc-rout)+1)
my = min(nrow, int(yc+rout))
edge = min(xc-0.5, (ncol+0.5)-xc, yc-0.5, (nrow+0.5)-yc)
!
! EDGE is the distance of the star's centroid from the outermost
! extremum of the array.
!
!
! Initialize star counts and aperture area.
!
do i = 1, naper
apsum(i) = real(0.0,dbl)
!
! If this star aperture extends outside the array, the magnitude
! in this aperture will be no good.
!
if (edge < raper(i)) apsum(i) = -huge(apsum) ! Null magnitude
area(i) = real(0.0,dbl)
enddo
!
! Now read through the submatrix, picking out the data we want.
!
nsky = 0
do j = ly, my
dysq = (j - yc)**2
do i = lx,mx
rsq = dysq + (i - xc)**2
datum = d(i,j)
! elliptic apertures
u = i - xc
v = j - yc
x = c*u + s*v
y =-s*u + c*v
if( abs(x) > 0 .or. abs(y) > 0 ) then
r = sqrt(x**2 + y**2)
phi = atan2(y,x*sqrte)
else
r = 0
phi = 0
end if
q = sqrt(1 - e**2*sin(phi)**2)
!
! Is this pixel within the sky annulus?
!
! write(*,*) r,rin,rout,datum,lobad,hibad
if( rin <= r .and. r <= rout .and. &
lobad <= datum .and. datum <= hibad ) then
nsky = nsky + 1
sky(nsky) = datum
dsky(nsky) = derr(i,j)
endif
!
! The inclusion of partial pixels inside the aperture is done as
! follows: if the distance of the center of the current pixel from the
! centroid of the star [radius vector r(i,j)] is exactly equal to the
! radius of the aperture [R(k)], then one-half of the counts in the
! pixel are included. If r(i,j) < R(k)-0.5, then the entire pixel is
! included, while if r(i,j) > R(k)+0.5, the pixel is wholly excluded.
! In between, viz. for R(k)-0.5 < r(i,j) < R(k)+0.5, the fraction of
! the counts included varies linearly. Therefore a circular aperture
! is approximated by an irregular (not even convex) polygon.
!
! If this pixel falls completely outside the LARGEST aperture, go on
! to the next pixel. Notice that APMXSQ has actually been defined
! as (R(k)+0.5)**2 for the largest value of R(k), in accordance with
! the formula used for the partial pixels.
!
if (rsq <= apmxsq) then
! DAOPHOT original code adds to 0.5 to r by the commented
! formula; Munipack uses unmodified r value, the one-half
! is added in the fractn determination.
! r = sqrt(rsq) - 0.5
!
do k = 1, naper
!
! if this pixel falls completely outside THIS aperture, go on to the
! next aperture.
!
if ( r <= raper(k)+1 ) then
! determination of fraction of pixel in circular
! apertures uses traditional estimator, while
! the elliptic the improved one
if( abs(e) < epsilon(e) ) then
fractn = max(0.0, min(1.0,raper(k) - r + 0.5))
else
block
real :: a,b,xt,yt
a = raper(k)
b = a*sqrte
xt = a*cos(phi)
yt = b*sin(phi)
fractn = circfrac(a,b,phi,xt-x,yt-y,raper(k)*q>r)
! fractn = sqcover(x,y,raper(k))
! if( k == 3 .and. n == 1 ) &
! write(*,*) x,y,raper(k)-r,fractn, &
! max(0.0, min(1.0,raper(k) - r + 0.5)), &
! sqcover(x,y,raper(k))
end block
end if
!
! fractn is the fraction of the pixel that falls inside the
! (irregular) aperture.
!
! If the pixel is bad, set the total counts in this aperture to a number
! so negative that it will never be positive again.
! ! Null magnitude
if (datum < lobad .or. datum > hibad ) apsum(k)=-huge(1.0)
apsum(k) = apsum(k) + fractn*datum
area(k) = area(k) + fractn
endif
enddo
endif
enddo ! i
enddo ! j
!
! We have accumulated the brightnesses of individual sky pixels in the
! one-dimensional array SKY. Pixels falling above or below the BAD
! limits have already been eliminated. Now sort SKY to place the
! pixels in order of increasing brightness.
!
if (nsky < minsky) then
write(error_unit,*) "There aren't enough pixels in the sky annulus."
write(error_unit,*) 'Object at coordinates:',xc,yc
write(error_unit,*) ' Are you sure your bad pixel thresholds are all right?'
write(error_unit,*) ' If so, then you need a larger outer sky radius.'
write(error_unit,*) nsky,minsky,size(sky),lobad,hibad
goto 3333
end if
!
! Obtain the mode, standard deviation, and skewness of the peak in the
! sky histogram.
!
call rmean(sky(1:nsky),skymod,skyerr,skysig,flag=iflag)
! write(*,*) '*',n,nsky,skymod,skyerr,skysig,iflag
skyvar = skysig**2
sigsq = skyerr**2 ! equivalent of: sigsq = skyvar/nsky
!
! SKYMOD has units of (ADU/pixel), and SKYSIG is the pixel-to-pixel
! scatter of SKYMOD, in units of (ADU/pixel). SKYVAR is the
! variance (square of the standard deviation) of the sky brightness,
! (ADU/pixel)**2, and SIGSQ is the square of the standard error of the
! mean sky brightness.
!
! Subtract the sky from the integrated brightnesses in the apertures,
! convert the results to magnitudes, and compute standard errors.
!
do i = 1, naper
!
! If the modal sky value could not be determined, set the magnitude
! to 99.999: and total count sum to -1.
!
apsum(i) = apsum(i) - skymod*area(i)
if( apsum(i) > 0 .and. iflag < 5 ) then
!
! If the star + sky is fainter than the sky, or if the star aperture
! extends beyond the limits of the picture, or if there is a bad pixel
! in the star aperture, set the magnitude to 99.999.
!
error(1) = real(area(i)*skyvar)
error(2) = real(apsum(i)/phpadu)
error(3) = real(sigsq*area(i)**2)
! For Munipack, we needs counts. Sum in aperture is multiplied
! by phpadu, gain (=1 allways), to get detected counts instead
! of digitalized data.
apcts(n,i) = real(apsum(i)*phpadu)
apcts_err(n,i) = real(sqrt(sum(error)))
! if( i == 6 ) write(*,*) area(i),apsum(i),sqrt(error)
else
apcts(n,i) = -1
apcts_err(n,i) = -1
end if
!
! These variables ERRORn are the respective variances (squares of the
! mean errors) for: (1) random noise inside the star aperture, including
! readout noise and the degree of contamination by other stars in the
! neighborhood, as estimated by the scatter in the sky values (this
! standard error increases as the square root of the area of the
! aperture); (2) the Poisson statistics of the observed star brightness;
! (3) the uncertainty of the mean sky brightness (this standard error
! increases directly with the area of the aperture).
!
enddo
!
! Write out the answers.
!
! if (watch > 0.5) then
! if( verbose ) then
! write (*,"(10X, I5, 2F8.1, F9.3, ' +-', F6.3, 3x, g0.3)") &
! istar, xc, yc, apmag, magerr, skymod
! write (*,"(/1X, I5, 14F9.3)") istar, xc, yc, (apmag(i), i=1,naper)
! write (*,"(4X, F9.3, 2F6.2, F8.3, 11F9.3)") skymod, min(99.99,skysig),&
! min(999.99, max(-99.99,skyskw)), (magerr(i), i=1,naper)
! endif
if( plog ) write(*,'(a,2(f0.3,1x),es15.5)') '=APHOT> ',xc,yc,apcts(n,1)
skystar(n) = skymod*phpadu
skystar_err(n) = skyerr*phpadu
3333 continue
enddo ! over stars
!
!-----------------------------------------------------------------------
!
! Normal return.
!
! Estimate magnitude limit, close files, and return.
!
if( verbose ) write(*,"(a,i0,a)") " Found ",nstar," star(s)."
deallocate(sky,dsky)
end subroutine daophotsb
real function circfrac(a,b,phi,dx,dy,outer)
! Estimates relative fraction of pixel intesrected with aperture circle edge
! The pixel is approximated by circle, the edge by a line.
real, parameter :: pi = 3.14159265358979323844
real, parameter :: rc = 0.564 ! = 1/sqrt(pi) radius of circumcircle
real, parameter :: Area = pi*rc**2 ! circle area, should be == 1
real, intent(in) :: a,b,phi,dx,dy
logical, intent(in) :: outer
real :: k,q,D,w,s,x1,x2,y1,y2,t,alpha,dA
! singular points
if( abs(a) < epsilon(a) .or. abs(phi) < epsilon(phi) ) then
if( outer ) then
circfrac = 1
else
circfrac = 0
end if
return
end if
! the intersection
! https://en.wikipedia.org/wiki/Intersection_(Euclidean_geometry)
! tangent: y = kx + q
k = - (b/a) / tan(phi)
q = dy - k*dx
! discriminant
w = 1 + k**2
D = rc**2*w - q**2
if( D > 0 ) then
s = sqrt(D)
x1 = (-q*k + s) / w
x2 = (-q*k - s) / w
y1 = (q + k*s) / w
y2 = (q - k*s) / w
t = sqrt((y2 - y1)**2 + (x2 - x1)**2)
alpha = 2*asin(min(t/rc/2,1.0))
! https://en.wikipedia.org/wiki/Circular_segment
dA = rc**2*(alpha - sin(alpha)) / 2
if( outer ) then
circfrac = (Area - dA) / Area
else
circfrac = dA / Area
end if
else
if( outer ) then
circfrac = 1
else
circfrac = 0
end if
end if
end function circfrac
real function sqcover(xpix,ypix,raper)
! This routine computes coveradge of pixel on the edge by numerical way.
! It's dumy, slow, designed for testing purposes.
real, intent(in) :: xpix,ypix,raper
real :: x,y
integer :: i,j,n,k
n = 0
k = 0
do i = -50, 50
x = xpix + i / 100.0
do j = -50, 50
y = ypix + j / 100.0
if( sqrt(x**2 + y**2) < raper ) k = k + 1
n = n + 1
end do
end do
sqcover = real(k) / real(n)
end function sqcover
end module daofotometr
|