File: daofotometr.f08

package info (click to toggle)
munipack 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 33,104 kB
  • sloc: cpp: 29,677; sh: 4,909; f90: 2,872; makefile: 278; python: 140; xml: 72; awk: 12
file content (506 lines) | stat: -rw-r--r-- 16,563 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
!
!     PHOTOMETRY, aperture photometry
!     Copyright (C) 1997-9,2010,2013-19 Filip Hroch, Masaryk University
!     Copyright (C) 1991 P.B. Stetson, Dominon Astrophysical Observatory
!
!
!  This file is part of Munipack.
!
!  Credits
!
!    Almost all this source is authored by P. B. Stetson.
!    I adapted it for Fortran 90 (allocatable arrays, precision,
!    array syntax), corrected errors, improve sky estimate by
!    variance stabilising estimator, elliptic aperture.
!
!
!  Munipack is free software: you can redistribute it and/or modify
!  it under the terms of the GNU General Public License as published by
!  the Free Software Foundation, either version 3 of the License, or
!  (at your option) any later version.
!
!  Munipack is distributed in the hope that it will be useful,
!  but WITHOUT ANY WARRANTY; without even the implied warranty of
!  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!  GNU General Public License for more details.
!
!  You should have received a copy of the GNU General Public License
!  along with Munipack.  If not, see <http://www.gnu.org/licenses/>.
!
!
!===================================================================
!
! 2019: I did complete revision of the source. The various obsolete
!      parts has been removed: input by hand, output for every star
!      (but output for program to program has been added). Both
!      elliptic and testing estimators of edge fraction has been included.
!      The code has been improved by latest computer development
!      and my development of robust estimators and photometry in counts.
!      I tried to keep Stetson's programming spirit and conventions.

module daofotometr

  integer, parameter, private :: dbl = selected_real_kind(14)

  private :: circfrac, sqcover

contains

  subroutine  daophotsb (d,derr,xstar,ystar,raper,ring,ecc,incl,lobad,hibad,&
       verbose,plog,apcts,apcts_err,skystar,skystar_err)

    use iso_fortran_env
    use oakleaf

    implicit none

    real, dimension(:,:), intent(in) :: d,derr
    real, dimension(:), intent(in) :: xstar, ystar, raper,ring
    real, dimension(:,:), intent(out) :: apcts,apcts_err
    real, dimension(:), intent(out) :: skystar,skystar_err
    real, intent(in) :: lobad, hibad, ecc, incl
    logical, intent(in) :: verbose, plog

!
!=======================================================================
!
! This subroutine derives the concentric aperture photometry.  At
! present, this is the only place in all of DAOPHOT where sky values
! are derived for the individual stars.
!
!               OFFICIAL DAO VERSION:  1991 April 18
!
! Argument
!
!    WATCH (INPUT) governs whether information relating to the progress
!          of the reductions is to be typed on the terminal screen
!          during execution.
!
!=======================================================================
!

    integer, parameter  :: minsky = 7!, maxap = 12
    real, parameter :: pi = 3.141592653589793115997963
    real, parameter :: rad = 57.295779513082322865

    ! It's expected that all data are already properly scaled by the gain.
    real, parameter :: phpadu = 1.0
!
! Parameters:
!
! MINSKY is the smallest number of pixels from which the sky may be
!        determined.  If for some star the number of sky pixels
!        is less than MINSKY, an error code will result and
!        control will return to the main program.
!
! MAXSKY the maximum number of pixels allowed in the sky annulus.
!        This and the user's requested inner sky radius will later
!        determine the maximum permitted outer sky radius.
!
! MAXAP  the maximum number of star apertures allowed.
!
    real(dbl), dimension(size(raper)) :: area, apsum
    real, dimension(:), allocatable :: sky, dsky
    real, dimension(3) :: error
    real :: skymod, skysig, sigsq, skyvar, skyerr, datum, r, rsq, fractn, &
         edge, apmxsq, rout, dysq, xc, yc, e,c,s,sqrte,u,v,x,y,phi,q,rin
    integer :: i, j, k, n, naper, nstar, lx, ly, nx, ny, mx, my, &
         nsky, ncol, nrow, iflag

    skystar = -1
    skystar_err = -1
    apcts = -1
    apcts_err = -1

    ncol = size(d,1)
    nrow = size(d,2)
    naper = size(raper)
    nstar = size(xstar)

!-----------------------------------------------------------------------
!
! SECTION 1
!
! Ascertain the name of the aperture photometry parameter table, and
! read it in.  Then set up all necessary variables for the forthcoming
! reductions. Finally, identify and open the input and output files.
!
    do i = 2, naper
       if( raper(i) < raper(i-1) ) &
            stop "Error in APHOT: some aperture radius is invalid."
    end do

    apmxsq = -1.0
    do i = 1, naper
       apmxsq = max(apmxsq, (raper(i)+0.5)**2)
    end do

!
! sky buffers allocation
!
    nsky = int(max(pi*((ring(2)+1)**2 - ring(1)**2),1.5))
    allocate(sky(nsky),dsky(nsky))

!
! NAPER   is the number of apertures, whose radii are stored in
!         elements 1 through NAPER of the array PAR.
!
! APMXSQ  is the outermost edge of the largest aperture-- if the
!         distance squared of the center of a pixel from the centroid of
!         the star is greater than APMXSQ, then we know that no part
!         of the pixel is to be included in any aperture.
!
! Now define the other variables whose values are in the table.
!

    if( ring(1) >= ring(2) ) &
         stop "Error in APHOT: invalid sky ring radius."

    rin  = ring(1)
    rout = ring(2)

! If progress is being monitored, type out column headers.
!
!  if (watch > 0.5) &
!  if( verbose ) &
!       write (*,"(/13X, 'STAR', 5X, 'X', 7X, 'Y', 9X, 'MAG.(1)', 8X, 'SKY')")
!
!-----------------------------------------------------------------------
!
! SECTION 2
!
! Derive aperture photometry object by object.
!
! Get the coordinates of next object to be measured.
!
    lx = 1
    ly = 1
    nx = ncol
    ny = nrow

    e = ecc
    c = cos(incl/rad)
    s = sin(incl/rad)
    sqrte = sqrt(1 - e**2)

    do n = 1, nstar

       xc = xstar(n)
       yc = ystar(n)
!       istar = n
!
! Compute the limits of the submatrix.
!
       lx = max(1, int(xc-rout)+1)
       mx = min(ncol, int(xc+rout))
       ly = max(1, int(yc-rout)+1)
       my = min(nrow, int(yc+rout))
       edge = min(xc-0.5, (ncol+0.5)-xc, yc-0.5, (nrow+0.5)-yc)
!
! EDGE is the distance of the star's centroid from the outermost
! extremum of the array.
!

!
! Initialize star counts and aperture area.
!
       do  i = 1, naper
          apsum(i) = real(0.0,dbl)
!
! If this star aperture extends outside the array, the magnitude
! in this aperture will be no good.
!
          if (edge < raper(i)) apsum(i) = -huge(apsum)  ! Null magnitude
          area(i) = real(0.0,dbl)
       enddo
!
! Now read through the submatrix, picking out the data we want.
!
       nsky = 0
       do  j = ly, my
          dysq = (j - yc)**2
          do i = lx,mx
             rsq = dysq + (i - xc)**2
             datum = d(i,j)

             ! elliptic apertures
             u = i - xc
             v = j - yc
             x = c*u + s*v
             y =-s*u + c*v
             if( abs(x) > 0 .or. abs(y) > 0 ) then
                r = sqrt(x**2 + y**2)
                phi = atan2(y,x*sqrte)
             else
                r = 0
                phi = 0
             end if
             q = sqrt(1 - e**2*sin(phi)**2)

!
! Is this pixel within the sky annulus?
!
!           write(*,*) r,rin,rout,datum,lobad,hibad
             if( rin <= r .and. r <= rout .and. &
                  lobad <= datum .and. datum <= hibad ) then
                nsky = nsky + 1
                sky(nsky) = datum
                dsky(nsky) = derr(i,j)
             endif
!
! The inclusion of partial pixels inside the aperture is done as
! follows:  if the distance of the center of the current pixel from the
! centroid of the star [radius vector r(i,j)] is exactly equal to the
! radius of the aperture [R(k)], then one-half of the counts in the
! pixel are included.  If r(i,j) < R(k)-0.5, then the entire pixel is
! included, while if r(i,j) > R(k)+0.5, the pixel is wholly excluded.
! In between, viz. for  R(k)-0.5 < r(i,j) < R(k)+0.5, the fraction of
! the counts included varies linearly.  Therefore a circular aperture
! is approximated by an irregular (not even convex) polygon.
!
! If this pixel falls completely outside the LARGEST aperture, go on
! to the next pixel.  Notice that APMXSQ has actually been defined
! as (R(k)+0.5)**2 for the largest value of R(k), in accordance with
! the formula used for the partial pixels.
!
             if (rsq <= apmxsq) then

                ! DAOPHOT original code adds to 0.5 to r by the commented
                ! formula; Munipack uses unmodified r value, the one-half
                ! is added in the fractn determination.
                ! r = sqrt(rsq) - 0.5
!
                do k = 1, naper
!
! if this pixel falls completely outside THIS aperture, go on to the
! next aperture.
!
                   if ( r <= raper(k)+1 ) then

                    ! determination of fraction of pixel in circular
                    ! apertures uses traditional estimator, while
                    ! the elliptic the improved one
                      if( abs(e) < epsilon(e) ) then
                         fractn = max(0.0, min(1.0,raper(k) - r + 0.5))
                      else
                         block
                           real :: a,b,xt,yt
                           a = raper(k)
                           b = a*sqrte
                           xt = a*cos(phi)
                           yt = b*sin(phi)
                           fractn = circfrac(a,b,phi,xt-x,yt-y,raper(k)*q>r)
                           ! fractn = sqcover(x,y,raper(k))
                           ! if( k == 3 .and. n == 1 ) &
                           !  write(*,*) x,y,raper(k)-r,fractn, &
                           !  max(0.0, min(1.0,raper(k) - r + 0.5)), &
                           !  sqcover(x,y,raper(k))
                         end block
                      end if

!
! fractn is the fraction of the pixel that falls inside the
! (irregular) aperture.
!
! If the pixel is bad, set the total counts in this aperture to a number
! so negative that it will never be positive again.
!                                                          ! Null magnitude
                      if (datum < lobad .or. datum > hibad ) apsum(k)=-huge(1.0)
                      apsum(k) = apsum(k) + fractn*datum
                      area(k) = area(k) + fractn
                   endif
                enddo
             endif
          enddo ! i
       enddo ! j
!
! We have accumulated the brightnesses of individual sky pixels in the
! one-dimensional array SKY.  Pixels falling above or below the BAD
! limits have already been eliminated.  Now sort SKY to place the
! pixels in order of increasing brightness.
!
       if (nsky < minsky)  then
          write(error_unit,*) "There aren't enough pixels in the sky annulus."
          write(error_unit,*) 'Object at coordinates:',xc,yc
          write(error_unit,*) ' Are you sure your bad pixel thresholds are all right?'
          write(error_unit,*) ' If so, then you need a larger outer sky radius.'
          write(error_unit,*) nsky,minsky,size(sky),lobad,hibad
          goto 3333
       end if
!
! Obtain the mode, standard deviation, and skewness of the peak in the
! sky histogram.
!
       call rmean(sky(1:nsky),skymod,skyerr,skysig,flag=iflag)
!       write(*,*) '*',n,nsky,skymod,skyerr,skysig,iflag

       skyvar = skysig**2
       sigsq = skyerr**2    ! equivalent of: sigsq = skyvar/nsky

!
! SKYMOD has units of (ADU/pixel), and SKYSIG is the pixel-to-pixel
! scatter of SKYMOD, in units of (ADU/pixel).  SKYVAR is the
! variance (square of the standard deviation) of the sky brightness,
! (ADU/pixel)**2, and SIGSQ is the square of the standard error of the
! mean sky brightness.
!
! Subtract the sky from the integrated brightnesses in the apertures,
! convert the results to magnitudes, and compute standard errors.
!
       do i = 1, naper
!
! If the modal sky value could not be determined, set the magnitude
! to 99.999: and total count sum to -1.
!
          apsum(i) = apsum(i) - skymod*area(i)
          if( apsum(i) > 0 .and. iflag < 5 ) then
!
! If the star + sky is fainter than the sky, or if the star aperture
! extends beyond the limits of the picture, or if there is a bad pixel
! in the star aperture, set the magnitude to 99.999.
!
             error(1) = real(area(i)*skyvar)
             error(2) = real(apsum(i)/phpadu)
             error(3) = real(sigsq*area(i)**2)

! For Munipack, we needs counts. Sum in aperture is multiplied
! by phpadu, gain (=1 allways), to get detected counts instead
! of digitalized data.

             apcts(n,i) = real(apsum(i)*phpadu)
             apcts_err(n,i) = real(sqrt(sum(error)))
!             if( i == 6 ) write(*,*) area(i),apsum(i),sqrt(error)
          else
             apcts(n,i) = -1
             apcts_err(n,i) = -1
          end if


!
! These variables ERRORn are the respective variances (squares of the
! mean errors) for: (1) random noise inside the star aperture, including
! readout noise and the degree of contamination by other stars in the
! neighborhood, as estimated by the scatter in the sky values (this
! standard error increases as the square root of the area of the
! aperture); (2) the Poisson statistics of the observed star brightness;
! (3) the uncertainty of the mean sky brightness (this standard error
! increases directly with the area of the aperture).
!
       enddo
!
! Write out the answers.
!
!      if (watch > 0.5) then
!      if( verbose ) then
!         write (*,"(10X, I5, 2F8.1, F9.3, ' +-', F6.3, 3x, g0.3)") &
!              istar, xc, yc, apmag, magerr, skymod
!         write (*,"(/1X, I5, 14F9.3)") istar, xc, yc, (apmag(i), i=1,naper)
!         write (*,"(4X, F9.3, 2F6.2, F8.3, 11F9.3)") skymod, min(99.99,skysig),&
!              min(999.99, max(-99.99,skyskw)), (magerr(i), i=1,naper)
!      endif

       if( plog ) write(*,'(a,2(f0.3,1x),es15.5)') '=APHOT> ',xc,yc,apcts(n,1)

       skystar(n) = skymod*phpadu
       skystar_err(n) = skyerr*phpadu

3333 continue
    enddo ! over stars
!
!-----------------------------------------------------------------------
!
! Normal return.
!
! Estimate magnitude limit, close files, and return.
!

    if( verbose ) write(*,"(a,i0,a)") " Found ",nstar," star(s)."
    deallocate(sky,dsky)

  end subroutine daophotsb

  real function circfrac(a,b,phi,dx,dy,outer)

    ! Estimates relative fraction of pixel intesrected with aperture circle edge
    ! The pixel is approximated by circle, the edge by a line.

    real, parameter :: pi = 3.14159265358979323844
    real, parameter :: rc = 0.564 ! = 1/sqrt(pi) radius of circumcircle
    real, parameter :: Area = pi*rc**2      ! circle area, should be == 1

    real, intent(in) :: a,b,phi,dx,dy
    logical, intent(in) :: outer
    real :: k,q,D,w,s,x1,x2,y1,y2,t,alpha,dA

    ! singular points
    if( abs(a) < epsilon(a) .or. abs(phi) < epsilon(phi) ) then
       if( outer ) then
          circfrac = 1
       else
          circfrac = 0
       end if
       return
    end if

    ! the intersection
    ! https://en.wikipedia.org/wiki/Intersection_(Euclidean_geometry)

    ! tangent: y = kx + q
    k = - (b/a) / tan(phi)
    q = dy - k*dx

    ! discriminant
    w = 1 + k**2
    D = rc**2*w - q**2

    if( D > 0 ) then
       s = sqrt(D)
       x1 = (-q*k + s) / w
       x2 = (-q*k - s) / w
       y1 = (q + k*s) / w
       y2 = (q - k*s) / w
       t = sqrt((y2 - y1)**2 + (x2 - x1)**2)
       alpha = 2*asin(min(t/rc/2,1.0))
       ! https://en.wikipedia.org/wiki/Circular_segment
       dA = rc**2*(alpha - sin(alpha)) / 2
       if( outer ) then
          circfrac = (Area - dA) / Area
       else
          circfrac = dA / Area
       end if
    else
       if( outer ) then
          circfrac = 1
       else
          circfrac = 0
       end if
    end if

  end function circfrac

  real function sqcover(xpix,ypix,raper)

    ! This routine computes coveradge of pixel on the edge by numerical way.
    ! It's dumy, slow, designed for testing purposes.

    real, intent(in) :: xpix,ypix,raper

    real :: x,y
    integer :: i,j,n,k

    n = 0
    k = 0
    do i = -50, 50
       x = xpix + i / 100.0
       do j = -50, 50
          y = ypix + j / 100.0
          if( sqrt(x**2 + y**2) < raper ) k = k + 1
          n = n + 1
       end do
    end do

    sqcover = real(k) / real(n)

  end function sqcover

end module daofotometr