File: rplane.f95

package info (click to toggle)
munipack 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 33,104 kB
  • sloc: cpp: 29,677; sh: 4,909; f90: 2,872; makefile: 278; python: 140; xml: 72; awk: 12
file content (279 lines) | stat: -rw-r--r-- 6,973 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
!
!  Robust estimate of a plane
!
!  Copyright © 2015 F.Hroch (hroch@physics.muni.cz)
!
!  This file is part of Munipack.
!
!  Munipack is free software: you can redistribute it and/or modify
!  it under the terms of the GNU General Public License as published by
!  the Free Software Foundation, either version 3 of the License, or
!  (at your option) any later version.
!
!  Munipack is distributed in the hope that it will be useful,
!  but WITHOUT ANY WARRANTY; without even the implied warranty of
!  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!  GNU General Public License for more details.
!
!  You should have received a copy of the GNU General Public License
!  along with Munipack.  If not, see <http://www.gnu.org/licenses/>.
!
!

module robustplane

  implicit none

  ! numerical precision of real numbers
  integer, parameter, private :: dbl = selected_real_kind(15)

  ! print debug informations ?
  logical, parameter, private :: verbose = .false.

  real(dbl), dimension(:), allocatable, private :: xdata, ydata, zdata, &
       xsig, ysig, zsig
  real(dbl), private :: rsig

  private :: planefun,planedif,planelog,res

contains

  subroutine rplane(x,dx,y,dy,z,dz,q,dq,sig,info)

    use minpacks
    use NelderMead
    use oakleaf

    real(dbl), parameter :: macheps = epsilon(1.0_dbl)
    integer, parameter :: maxeval = 1000000
    real(dbl), dimension(:), intent(in) :: x,y,z,dx,dy,dz
    real(dbl), dimension(:), intent(in out) :: q,dq
    real(dbl), intent(out) :: sig
    integer, intent(out) :: info
    integer :: icount, numres, ifault, ndata, nprint
    real(dbl), dimension(size(q)+1) :: p,dp,p0
    real(dbl), dimension(size(p),size(p)) :: jac,hess
    real(dbl),dimension(:), allocatable :: f,df,r
    real(dbl) :: s,d,mad,sum2,sum3
    integer :: i

    if( size(q) /= 3 ) stop 'Plane needs to have tree parameters.'

    if( verbose ) then
       nprint = 1
    else
       nprint = 0
    end if

    info = 3 ! no initialisation
    ndata = size(x)
    allocate(xdata(ndata),ydata(ndata),zdata(ndata),xsig(ndata),ysig(ndata),zsig(ndata),&
         f(ndata),df(ndata),r(ndata))
    xdata = x
    ydata = y
    zdata = z
    xsig = dx
    ysig = dy
    zsig = dz

    ! init by absolute deviations
    p(1:3) = q
    dp(1:3) = dq
    p0 = p
    call nelmin(planefun,3,p0(1:3),p(1:3),mad,macheps,dp(1:3),1,maxeval,icount,numres,ifault)
    if( verbose ) write(*,'(a,3f15.3,i5)') 'rplane init:',p(1:3),ifault
    if( ifault /= 0 ) then
       info = 2 ! no convergence
       if( verbose ) &
            write(*,*) "rplane init finished prematurely without convergence."
       goto 666
    end if
    q = p(1:3)

    r = abs(zdata - (p(1) + p(2)*xdata + p(3)*ydata))
    sig = median(r) / 0.6745
    if( verbose ) write(*,'(a,f0.5)') 'sig0 = ',sig
    rsig = sig

    if( verbose ) write(*,*) 'Winsorisation:'
    do i = 1,size(zdata)
       r(i) = (zdata(i) - (p(1) + p(2)*xdata(i) + p(3)*ydata(i))) / sig
       if( abs(r(i)) > 3 ) then
          d = p(1) + p(2)*xdata(i) + p(3)*ydata(i) + sign(3*sig,r(i))
          if( verbose ) write(*,'(4g15.5)') i,d,zdata(i),r(i)
          zdata(i) = d
       end if
    end do

    ! locate proper minimum
    p(4) = 1
    p0 = p
    dp = abs(0.1*p + 0.01*sig + 1e-3)
    dp(4) = 0.1
    dp = 0.1*dp
    call nelmin(planelog,size(p),p0,p,s,macheps,dp,1,maxeval,icount,numres,ifault)
    if( verbose ) write(*,'(a,i3,4g13.5)') 'Approximate solution: ',ifault,p
    if( ifault /= 0 ) then
       info = 2 ! no convergence
       if( verbose ) &
            write(*,*) "rplane finished prematurely without likelihood convergence."
       goto 666
    end if
    q = p(1:3)

    ! robust estimate
    call lmdif2(planedif,p,epsilon(p),nprint,info)
    if( verbose ) write(*,'(a,4f10.5,i5)') 'robust:',p,info
    if( info == 5 ) then
       info = 2 ! no convergence
       if( verbose ) &
            write(*,*) "rplane finished prematurely without lmdif convergence."
       goto 666
    end if
    q = p(1:3)

    ! estimation of uncertainties
    call res(p(1),p(2),p(3),r)
    f = huber(r)
    df = dhuber(r)
    sum2 = sum(df)
    sum3 = sum(f**2)

    if( sum2 > epsilon(sum2) ) then

       ! Huber (6.6)
       ! compute jac!!
       call qrinv(jac,hess)
       sig = sig*sqrt(sum3/sum2*ndata/(ndata-1.0))
       do i = 1, size(q)
          if( abs(hess(i,i)) > 0 ) then
             dq(i) = sig * sqrt(abs(hess(i,i)))
          else
             dq(i) = sig / sqrt(ndata - 1.0)
          end if
       end do

       if( verbose ) then
          write(*,*) 'jac:',real(jac(1,:))
          write(*,*) 'jac:',real(jac(2,:))
          write(*,*) 'jac:',real(jac(3,:))
          write(*,*) 'jac:',real(jac(4,:))
          write(*,*) 'hess:',real(hess(1,:))
          write(*,*) 'hess:',real(hess(2,:))
          write(*,*) 'hess:',real(hess(3,:))
          write(*,*) 'hess:',real(hess(4,:))
       end if

    else
       dq = 0
    end if
    info = 0

666 continue

    deallocate(xdata,ydata,zdata,xsig,ysig,zsig,f,df,r)

  end subroutine rplane


  function planefun(p) result(s)

    real(dbl), dimension(:), intent(in) :: p
    real(dbl) :: s

    s = sum(abs(p(1) + p(2)*xdata + p(3)*ydata - zdata)) / size(xdata)

  end function planefun


  subroutine res(a,b,c,r)

    real(dbl), intent(in) :: a,b,c
    real(dbl), dimension(:), intent(out) :: r

    r = (zdata - (a + b*xdata + c*ydata)) / &
         sqrt(zsig**2 + b**2*xsig**2 + c**2*ysig**2 + rsig**2)

  end subroutine res


  function planelog(p)

    use oakleaf

    real(dbl), dimension(:), intent(in) :: p
    real(dbl) :: planelog
    real(dbl), dimension(:), allocatable :: r,f,ds
    real(dbl) :: a,b,c,s
    integer :: n

    n = size(xdata)
    a = p(1)
    b = p(2)
    c = p(3)
    s = p(4)

    if( s < epsilon(s) ) then
       planelog = 100*n
       return
    end if

    allocate(r(n),f(n),ds(n))

    call res(a,b,c,r)
    r = r / s
    f = ihuber(r)

    planelog = sum(f) + n*log(s)
!    write(*,'(7f10.5)') p,planelog,sum(f),n*log(s)

    deallocate(r,f,ds)

  end function planelog



  subroutine planedif(m,np,p,fvec,iflag)

    use oakleaf

    integer, intent(in) :: m,np
    integer, intent(in out) :: iflag
    real(dbl), dimension(np), intent(in) :: p
    real(dbl), dimension(m), intent(out) :: fvec
    real(dbl), dimension(:), allocatable :: r,f,ds
    integer :: n
    real(dbl) :: a,b,c,s

    if( iflag == 0 ) then
!       write(*,'(6g13.5)') p
!       write(*,'(6g13.5)') fvec
       return
    end if

    n = size(xdata)
    allocate(r(n),f(n),ds(n))

    a = p(1)
    b = p(2)
    c = p(3)
    s = p(4)

    ds = sqrt(zsig**2 + b**2*xsig**2 + c**2*ysig**2 + rsig**2)
    call res(a,b,c,r)
    r = r / s
    f = huber(r)

    fvec(1) = sum(f/ds)
    fvec(2) = sum(f*(xdata + r*b*xsig**2/ds)/ds)
    fvec(3) = sum(f*(ydata + r*c*ysig**2/ds)/ds)
    fvec(4) = sum(f*r)/s - n

    fvec = - fvec / s

    deallocate(r,f,ds)

  end subroutine planedif


end module robustplane