1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
|
!
! Flat Average of a set of flat-fields.
! Copyright (C) 1997 - 2024 Filip Hroch, Masaryk University, Brno, CZ
!
! This file is part of Munipack.
!
! Munipack is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! Munipack is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with Munipack. If not, see <http://www.gnu.org/licenses/>.
!
program flatmaker
use fitscorr
use oakleaf
use titsio
use iso_fortran_env
implicit none
! debuging
logical, parameter :: debug = .false.
! verbosity
logical :: verbose = .false.
! Default Output image name:
character(len=FLEN_FILENAME) :: flatname = 'flat.fits'
character(len=FLEN_FILENAME) :: biasname = ''
character(len=FLEN_FILENAME) :: darkname = ''
character(len=FLEN_FILENAME) :: maskname = ''
! lower and upper limits
real :: saturate = -1
real :: threshold = epsilon(threshold)
logical :: saturate_set = .false.
logical :: threshold_set = .false.
integer :: eq, stat, naxis
integer, dimension(2) :: naxes
integer :: nflat = 0 ! counter of flats
integer :: bitpix = -32
integer :: maxiter = 7
integer :: status = 0
character(len=8) :: approximation = 'STANDARD'
real :: flat_mean = 1, flat_err = 0
real :: gain_mean = 1, gain_err = 0
real :: time = 1
real :: xdark = -1.0
real :: gain = 1
logical :: gain_set = .false.
! mean flat with statistical error
real, dimension(:,:), allocatable :: flat, flaterr
logical, dimension(:,:), allocatable :: bitmask
character(len=80) :: msg
character(len=4*FLEN_FILENAME) :: record, key, val
character(len=FLEN_VALUE) :: dateobs, filter, imagetyp
character(len=FLEN_FILENAME), dimension(:), allocatable :: flatnames
character(len=FLEN_KEYWORD), dimension(6) :: keys = [ &
FITS_KEY_DATEOBS, &
FITS_KEY_EXPTIME, &
FITS_KEY_FILTER, &
FITS_KEY_SATURATE, &
FITS_KEY_TEMPERATURE, &
FITS_KEY_GAIN ]
! FITS wrappers
type(CorrFits), allocatable :: darkfits, biasfits, maskfits
type(CorrFits), dimension(:), allocatable :: flats
! Section: Input ---------------------------------------
do
read(*,'(a)',iostat=stat,iomsg=msg) record
if( stat == IOSTAT_END ) exit
if( stat > 0 ) then
write(error_unit,*) trim(msg)
error stop 'Input error.'
end if
eq = index(record,'=')
if( eq == 0 ) error stop 'Malformed input record.'
key = record(:eq-1)
val = record(eq+1:)
if( key == 'VERBOSE' ) then
read(val,*) verbose
endif
if( key == 'OUTPUT' ) then
read(val,*) flatname
endif
if( key == 'BITPIX' ) then
read(val,*) bitpix
endif
if( key == 'SATURATE' ) then
read(val,*) saturate
if( .not. (saturate > 0) ) stop 'Saturation > 0 is required.'
saturate_set = .true.
endif
if( key == 'THRESHOLD' ) then
read(val,*) threshold
if( .not. (threshold > 0) ) stop 'Threshold > 0 is required.'
threshold_set = .true.
endif
if( key == 'GAIN' ) then
read(val,*) gain
gain_set = .true.
endif
if( key == 'APPROXIMATION' ) then
read(val,*) approximation
if( approximation == 'BASIC' ) then
maxiter = 0
else !if( approximation == 'STANDARD' ) then
maxiter = 3
end if
endif
if( key == 'FITS_KEY_DATEOBS' ) then
read(val,*) keys(1)
endif
if( key == 'FITS_KEY_EXPTIME' ) then
read(val,*) keys(2)
endif
if( key == 'FITS_KEY_FILTER' ) then
read(val,*) keys(3)
endif
if( key == 'FITS_KEY_SATURATE' ) then
read(val,*) keys(4)
endif
if( key == 'FITS_KEY_TEMPERATURE' ) then
read(val,*) keys(5)
endif
if( key == 'FITS_KEY_GAIN' ) then
read(val,*) keys(6)
endif
if( key == 'BIAS' ) then
read(val,*) biasname
end if
if( key == 'XDARK' ) then
read(val,*) xdark
end if
if( key == 'DARK' ) then
read(val,*) darkname
end if
if( key == 'MASK' ) then
read(val,*) maskname
end if
if( key == 'NFILES' ) then
read(val,*) nflat
allocate(flatnames(nflat),stat=stat,errmsg=msg)
if( stat /= 0 ) then
write(error_unit,*) trim(msg)
error stop 'Insufficient memory.'
end if
nflat = 0
end if
if( key == 'FILE' ) then
nflat = nflat + 1
if( nflat > size(flatnames) ) stop 'NFILES unspecified?'
read(val,*) flatnames(nflat)
end if
enddo
if( nflat == 0 ) stop 'No input image(s).'
if( nflat /= size(flatnames) ) error stop 'n /= size(flatnames)'
! Section: FITS files input ---------------------------------------
block
integer :: n
character :: gflag
logical :: filter_match = .true.
logical :: filter_empty = .false.
logical :: gain_default = .false.
! bias
if( biasname /= '' ) then
if( verbose ) write(error_unit,'(a)',advance="no") &
"Bias frame: "//trim(biasname)//","
allocate(biasfits)
call biasfits%Load(biasname,keys)
if( .not. biasfits%status ) stop 'Failed to load bias frame.'
if( verbose ) write(error_unit,'(a,1pg0.3,a,0pf0.1)') &
' exp.time[s] = ',biasfits%exptime, &
', T[degC] = ',biasfits%temper
end if
! dark
if( darkname /= '' ) then
if( verbose ) write(error_unit,'(a)',advance="no") &
"Dark frame: "//trim(darkname)//", "
allocate(darkfits)
call darkfits%Load(darkname,keys)
if( .not. darkfits%status ) stop 'Failed to load dark frame.'
if( verbose ) write(error_unit,'(a,1pg0.3,a,0pf0.1)') &
' exp.time[s] = ',darkfits%exptime, &
', T[degC] = ',darkfits%temper
end if
! mask
if( maskname /= '' ) then
if( verbose ) write(error_unit,*) "Mask frame: ",trim(maskname)
allocate(maskfits)
call maskfits%Load(maskname)
if( .not. maskfits%status ) stop 'Failed to load the mask frame.'
end if
if( verbose ) write(error_unit,*) &
"Filename, filter, exptime[s], gain[ct/adu], saturation[ct], T[degC]:"
! flats
allocate(flats(nflat),stat=stat,errmsg=msg)
if( stat /= 0 ) then
write(error_unit,*) trim(msg)
error stop 'Insufficient memory.'
end if
do n = 1, size(flatnames)
if( verbose ) write(error_unit,'(a)',advance="no") &
trim(flatnames(n))//":"
call flats(n)%Load(flatnames(n),keys)
if( .not. flats(n)%status ) stop 'Flat-field frame read failed.'
if( n == 1 .and. allocated(biasfits) ) then
if( .not. all(biasfits%naxes == flats(n)%naxes) ) then
stop "Dimensions of bias and the frame does not corresponds."
end if
end if
if( n == 1 .and. allocated(darkfits) ) then
if( .not. all(darkfits%naxes == flats(n)%naxes) ) then
stop "Dimensions of dark and the frame does not corresponds."
end if
end if
if( n == 1 .and. allocated(maskfits) ) then
if( .not. all(maskfits%naxes == flats(n)%naxes) ) then
stop "Dimensions of bitmask and the frame does not corresponds."
end if
end if
if( n > 1 ) then
if( .not. all(flats(n-1)%naxes == flats(n)%naxes) ) then
stop "Dimensions of images mutually does not corresponds."
end if
endif
! setup saturation
if( saturate_set ) flats(n)%saturate = saturate
! set gain by the provided value
if( gain_set ) then
flats(n)%gain = gain
flats(n)%gain_set = .true.
end if
if( verbose ) then
if( flats(n)%gain_set .or. gain_set ) then
gflag = ' '
else
gflag = '!'
gain_default = .true.
end if
write(error_unit,'(2x,a,2x,1pg0.3,2x,0pf0.3,a,2x,1p,g0.2,2x,0pf0.1)')&
trim(flats(n)%filter),flats(n)%exptime,flats(n)%gain,gflag, &
flats(n)%saturate,flats(n)%temper
! detect filter mismatch
if( flats(n)%filter /= flats(1)%filter ) filter_match = .false.
if( flats(n)%filter == '' ) filter_empty = .true.
end if
end do
if( .not. filter_match ) write(error_unit,*) &
"Warning: incompatible filters detected (try --verbose)."
if( filter_empty ) write(error_unit,*) &
"Warning: empty filter value is encountered (try --verbose). "
if( verbose .and. gain_default ) &
write(error_unit,*) "Gain default setup is indicated by '!' flag."
end block
! setup common parameters
naxis = flats(1)%naxis
naxes = flats(1)%naxes
dateobs = flats(1)%dateobs
imagetyp = flats(1)%imagetyp
filter = flats(1)%filter
allocate(flat(naxes(1),naxes(2)),flaterr(naxes(1),naxes(2)), &
bitmask(naxes(1),naxes(2)),stat=stat,errmsg=msg)
if( stat /= 0 ) then
write(error_unit,*) trim(msg)
error stop 'Insufficient memory.'
end if
if( allocated(maskfits) ) then
bitmask = maskfits%image > 0.5
deallocate(maskfits)
else
bitmask = .true.
end if
if( verbose ) then
write(error_unit,*)
write(error_unit,*) 'Flat-field frames:',nflat
write(error_unit,*) 'Flat frame dimensions:',naxes(1),'x',naxes(2)
write(error_unit,*) 'Filter: ',trim(filter)
write(error_unit,*) 'Accuracy of approximation: ',trim(approximation)
end if
! Section: flat-field preparation --------------------------------
! All flats are corrected for gain, bias, darks.
block
real, dimension(:,:), allocatable :: bias, ebias, dark, edark
logical, dimension(:,:), allocatable :: mask
real :: exptime
logical :: exptime_set
integer :: n,m
n = naxes(1)
m = naxes(2)
allocate(bias(n,m),ebias(n,m),dark(n,m),edark(n,m),mask(n,m), &
stat=stat,errmsg=msg)
if( stat /= 0 ) then
write(error_unit,*) trim(msg)
error stop 'Insufficient memory.'
end if
if( allocated(biasfits) ) then
bias = biasfits%image
ebias = biasfits%imgerr
deallocate(biasfits)
else
bias = 0
ebias = 0
end if
if( allocated(darkfits) ) then
dark = darkfits%image
edark = darkfits%imgerr
exptime = darkfits%exptime
exptime_set = darkfits%exptime_set .and. darkfits%exptime > 0
deallocate(darkfits)
else
dark = 0
edark = 0
exptime_set = .false.
end if
if( verbose ) write(error_unit,*) &
'Pre-corrections by gain, bias, or dark of raw flats ...'
do n = 1, size(flats)
! dark frame multiplicator
if( xdark > 0 )then
time = xdark
else if( flats(n)%exptime_set .and. exptime_set ) then
time = flats(n)%exptime / exptime
else
time = 1
end if
! Preparatory correct input flats (updates images in FitsCorr).
! Standard deviation is set with assumption of Poisson distribution
! of data. It requires large light fluxes, around half of a full range.
associate (image => flats(n)%image, imgerr => flats(n)%imgerr, &
saturate => flats(n)%saturate, gain => flats(n)%gain )
mask = threshold < image .and. image < saturate .and. bitmask
where( mask )
image = gain*(image - (bias + time*dark))
mask = image > epsilon(image)
elsewhere
! Important. Pixels out of the mask has set negative values
! during all computations below, use of individual masks
! for every frame takes a lot of memory.
image = -1
end where
where( mask )
imgerr = sqrt(image + gain**2*(ebias**2 + time**2*edark**2))
elsewhere
imgerr = -1
end where
! IMPORTANT
! imgerr means standard deviation: stdsig
! similarity stderr and imgerr, or meaning in dark.f08,
! is pure coincidental (and memory saving)
! determine of mean level of our current frame
call rmean(pack(image,mask),flats(n)%mean,flats(n)%stderr,flats(n)%sig)
end associate
end do
deallocate(mask,bias,ebias,dark,edark)
end block
! Section: Initial flat-field estimate as mean of scaled flats ------
! by averadge levels.
block
real, dimension(:), allocatable :: x
integer :: i,j,n,m
real :: thresh
n = naxes(1)
m = naxes(2)
allocate(x(nflat))
! Initial mean flat
if( verbose ) write(error_unit,'(a)') &
'Calculating the initial flat-field frame (iter. #0) ...'
do j = 1,naxes(2)
do i = 1,naxes(1)
! this is initial estimate only
! lighter frames has higher influence due Poisson statistics
n = 0
do m = 1, nflat
associate( image => flats(m)%image, imgerr => flats(m)%imgerr, &
mean => flats(m)%mean, &
saturate => flats(m)%saturate, gain => flats(m)%gain )
thresh = gain*threshold
if( thresh < image(i,j) .and. image(i,j) < saturate .and. &
bitmask(i,j) .and. mean > 0 ) then
n = n + 1
x(n) = image(i,j) / mean
end if
end associate
end do
if( n > 1 ) then
call rmean(x(1:n),flat(i,j),flaterr(i,j))
else
flat(i,j) = 1
flaterr(i,j) = 0
end if
enddo
enddo
deallocate(x)
end block
! Section: debug prints, write out the first estimate -----------
if( debug ) then
block
real, allocatable, dimension(:,:) :: res
integer :: i,j
allocate(res(naxes(1),naxes(2)),stat=stat,errmsg=msg)
if( stat /= 0 ) then
write(error_unit,*) trim(msg)
error stop 'Insufficient memory.'
end if
where( bitmask .and. flaterr > 0 )
res = (flat - 1) / (flaterr * sqrt(real(nflat)))
end where
open(1,file='/tmp/flatdebug_zero.dat')
do i = 1,size(flat,1),2
do j = 1,size(flat,2),2
if( bitmask(i,j) .and. flaterr(i,j) > 0 .and. &
abs(res(i,j)) < 25 ) then
write(1,*) flat(i,j)-1,res(i,j), flat(i,j)
end if
end do
end do
close(1)
deallocate(res)
end block
end if
! Section: estimate the flat-field with scaling by individual -----
! ratios against previously estimated flat-field.
block
logical, dimension(:,:), allocatable :: mask
real, dimension(:,:), allocatable :: res
real, dimension(:), allocatable :: u,ue,v,ve,gains
integer :: i,j,m,n,iter
logical :: terminate, reliable
real :: t, dt, d, sig, avg, thresh
allocate(res(naxes(1),naxes(2)),u(nflat),ue(nflat),v(nflat),ve(nflat), &
gains(nflat),mask(naxes(1),naxes(2)),stat=stat,errmsg=msg)
if( stat /= 0 ) then
write(error_unit,*) trim(msg)
error stop 'Insufficient memory.'
end if
terminate = .false.
do iter = 1, maxiter
! Now, we're improving accuracy of approximation. The number of
! iterations is controled by `terminate' variable which tests
! convergence of subsequent estimates of the created flat.
if( terminate ) exit
if( verbose ) then
write(error_unit,'(a)') &
'Scaling individual frames by the new flat ...'
write(error_unit,'(a)') &
"Filename, mean level[ct], std.err., std.dev., gain, reliable:"
end if
! Update mean levels for individual frames
do n = 1, nflat
associate( image => flats(n)%image, imgerr => flats(n)%imgerr, &
mean => flats(n)%mean, stderr => flats(n)%stderr, &
stdsig => flats(n)%sig, &
saturate => flats(n)%saturate, gain => flats(n)%gain )
thresh = flats(n)%gain * threshold
mask = thresh < image .and. image < saturate .and. imgerr > 0 &
.and. flat > 0 .and. flaterr > 0 .and. bitmask
call fmean(pack(image,mask),pack(imgerr,mask),pack(flat,mask), &
pack(flaterr,mask),t,dt,sig,reliable=reliable)
! call fmean(pack(flat,mask),pack(flaterr,mask), &
! pack(image,mask),pack(imgerr,mask),t,dt,sig,reliable=reliable)
! We assumes Poisson distribution of flat pixels, their dispersion
! is bound to the mean value. Data with strong fluence of
! non-Poisson noise component should be avoided already.
! update only when our estimate is realiable
if( reliable ) then
mean = t
stderr = dt
stdsig = sig
end if
if( verbose ) then
gains(n) = t / sig**2
write(error_unit, &
'(2a,2x,1pg0.5,2x,1pg0.3,1x,1pg0.5,2x,0pf0.3,2x,l1)') &
trim(flatnames(n)),": ",t,dt,sig,gains(n),reliable
end if
end associate
enddo ! over all frames
! update flat
if( verbose ) write(error_unit,'(a,i0,a)') &
'Calculating accurate flat-field frame (iter. #',iter,') ...'
res = -1
do j = 1,naxes(2)
do i = 1,naxes(1)
n = 0
do m = 1, nflat
associate( image => flats(m)%image, imgerr => flats(m)%imgerr, &
mean => flats(m)%mean, sig => flats(m)%sig, &
saturate => flats(m)%saturate, gain => flats(m)%gain )
thresh = gain*threshold
if( thresh < image(i,j) .and. image(i,j) < saturate .and. &
imgerr(i,j) > 0 .and. bitmask(i,j) .and. &
mean > 0 .and. sig > 0 ) then
n = n + 1
u(n) = image(i,j)
ue(n) = imgerr(i,j)
v(n) = mean
ve(n) = sig
end if
end associate
enddo
if( n > 0 ) then
avg = flat(i,j)
if( debug .and. i == naxes(1)/2 .and. j == naxes(2)/2 ) &
! call fmean(v(1:n),ve(1:n),u(1:n),ue(1:n), &
! flat(i,j),flaterr(i,j),reliable=reliable,verbose=.true.)
call fmean(u(1:n),ue(1:n),v(1:n),ve(1:n), &
flat(i,j),flaterr(i,j),reliable=reliable,verbose=.true.)
call fmean(u(1:n),ue(1:n),v(1:n),ve(1:n), &
flat(i,j),flaterr(i,j))
! call fmean(v(1:n),ve(1:n),u(1:n),ue(1:n), &
! flat(i,j),flaterr(i,j))
! Non reliable pixels are silently ignored. Some data
! has strongly non-gaussian distribution: the case of
! bad columns and pixels, an overscan data and etc.
! if( .not. reliable .and. verbose ) write(*,*) i,j
! the absolute difference between the result of previous
! computation and the current one controls termination
if( reliable ) res(i,j) = abs(avg - flat(i,j))
else
flat(i,j) = 1
flaterr(i,j) = 0
end if
enddo
enddo
! condition for terminate: the mean difference of running flats
! between two latest subsequent iterations is smaller
! the mean std.err. limit
d = qmedian(pack(res,res>0))
flat_err = qmedian(pack(flaterr,flaterr>0))
terminate = d < flat_err
if( verbose ) &
write(error_unit,'(a,3x,1p,2(g0.1,2x),l1)') &
'Mean residual and std.dev., terminate:',d,flat_err,terminate
end do ! iter
! final mean over the whole area
call rmean(pack(flat,bitmask),flat_mean)
if( verbose ) &
call rmean(gains,gain_mean,gain_err)
if( maxiter == 0 ) flat_err = qmedian(pack(flaterr,flaterr>0))
deallocate(mask,res,u,ue,v,ve,gains)
end block
! Section: diagnostics ----------------------------------------
block
character(len=FLEN_FILENAME) :: buf
logical, dimension(:,:), allocatable :: mask
real, dimension(:,:), allocatable :: res,des
real :: thresh
integer :: i,j,n
allocate(mask(naxes(1),naxes(2)),res(naxes(1),naxes(2)), &
des(naxes(1),naxes(2)),stat=stat,errmsg=msg)
if( stat /= 0 ) then
write(error_unit,*) trim(msg)
error stop 'Insufficient memory.'
end if
if( debug ) then
! (**)
! Diagnostics. The second column of the files
! are residuals intended for Normality testing.
!
! https://stackoverflow.com/questions/2471884/
! or:
! gnuplot> binwidth=0.05
! gnuplot> bin(x,width)=width*floor(x/width)
! gnuplot> plot '/tmp/flatdebug_666.fits.dat' \
! using (bin($2,binwidth)):(1.0) smooth freq with boxes
do n = 1, nflat
associate( image => flats(n)%image, imgerr => flats(n)%imgerr, &
mean => flats(n)%mean, saturate => flats(n)%saturate, &
gain => flats(n)%gain )
thresh = gain*threshold
mask = thresh < image .and. image < saturate .and. &
flat > 0 .and. flaterr > 0 .and. bitmask
where( mask )
des = sqrt(imgerr**2 + mean**2*flaterr**2)
res = (image - mean*flat) / des
end where
write(buf,'(a,i0,a)') '/tmp/flatdebug_',n,'.dat'
open(1,file=buf)
write(1,'(2a)') '# ',trim(flatnames(n))
do i = 1,size(image,1),2
do j = 1,size(image,2),2
if( mask(i,j) .and. abs(res(i,j)) < 5 ) then
write(1,*) image(i,j)-mean, res(i,j), flat(i,j)
end if
end do
end do
close(1)
end associate
end do
end if ! debug
deallocate(mask,res,des)
end block
! Section: save in integers implies to scale the flat ------------------
block
integer :: waterline
real :: maxflat
! Representation of flat by integers can't be recommended in any case,
! but it can be useful for a compatibility
if( bitpix > 0 ) then
! scaled to waterline
waterline = nint(10.0**(int(log10(2.0**(bitpix-1)))))
! waterline updates mean levels on 1e2,1e4 and 1e9
flat_mean = waterline * flat_mean
flat = waterline * flat
flaterr = waterline * flaterr
maxflat = 2.0**bitpix - 1
! range cut-off
flat = max(0.0,min(flat,maxflat))
flaterr = max(0.0,min(flaterr,maxflat))
if( verbose ) write(error_unit,*) &
'Warning: Numerical accurate degraded by conversion to integers.'
end if
end block
if( verbose ) then
write(error_unit,'(2a)') ' Output image: ',trim(flatname)
write(error_unit,'(a,3x,1pg0.7)') ' Final mean:',flat_mean
write(error_unit,'(a,3x,1pg0.1)') &
' Expected photometry standard error per pixel:',flat_err
write(error_unit,'(a,2(2x,f0.3),a,f0.3,a)') &
' Estimated relative gain, std.err:',gain_mean,gain_err, &
' (original gain was ',gain,').'
end if
! Section: FITS save ----------------------------------------------
block
integer, parameter :: group = 1
character(len=*), parameter :: afid = 'FLAT'
character(len=FLEN_CARD) :: buf
integer :: n
type(fitsfiles) :: fits
call fits_create_scratch(fits,status)
call fits_insert_img(fits,bitpix,naxis,naxes,status)
if( dateobs /= '' ) &
call fits_write_key(fits,keys(1),dateobs, &
'UTC of the first on input',status)
if( filter /= '' ) &
call fits_write_key(fits,keys(3),filter,'filter',status)
if( imagetyp /= '' ) &
call fits_write_key(fits,FITS_KEY_IMAGETYP,imagetyp, &
'Image type',status)
if( verbose ) then
call fits_write_key(fits,'GAIN_AVG',gain_mean,6, &
'[ct/ADU] estimated gain',status)
call fits_write_key(fits,'GAIN_STD',gain_err,2, &
'[ct/ADU] std.dev of estimated gain',status)
end if
if( nflat > 0 ) then
write(buf,'(a,i0,a)') 'Result of flat-fielding of ',nflat,' frames(s):'
call fits_write_comment(fits,buf,status)
do n = 1, nflat
call fits_write_comment(fits,"'"//trim(flatnames(n))//"'",status)
enddo
endif
if( gain_set ) then
write(buf,'(f0.3)') gain
call fits_write_history(fits,afid//" gain: "//trim(buf),status)
end if
if( darkname /= '' ) then
write(buf,'(a,g0.5)') afid//" dark: '"//trim(darkname)//"' *",time
call fits_write_history(fits,buf,status)
end if
if( biasname /= '' ) then
buf = afid//" bias: '"//trim(biasname)//"'"
call fits_write_history(fits,buf,status)
end if
if( maskname /= '' ) then
buf = afid//" bitmask: '"//trim(maskname)//"'"
call fits_write_history(fits,buf,status)
end if
if( threshold_set ) then
write(buf,*) afid//" threshold: ", threshold, " (no gain applied)"
call fits_write_history(fits,buf(2:),status)
end if
if( saturate_set ) then
write(buf,*) afid//" saturation: ",saturate," (no gain applied)"
call fits_write_history(fits,buf(2:),status)
end if
write(buf,*) afid//" mean level: ",flat_mean
call fits_write_history(fits,buf(2:),status)
call fits_update_key(fits,FITS_KEY_CREATOR,FITS_VALUE_CREATOR, &
FITS_COM_CREATOR,status)
call fits_write_comment(fits,MUNIPACK_VERSION,status)
! flat-field data
call fits_write_image(fits,group,flat,status)
! standard error of mean
call fits_insert_img(fits,bitpix,naxis,naxes,status)
call fits_update_key(fits,'EXTNAME',EXT_STDERR,'',status)
call fits_write_comment(fits,&
'The estimation of standard error of mean of pixels of flat-field.',&
status)
call fits_write_image(fits,group,flaterr,status)
if( status == 0 ) then
if( fits_file_exist(flatname) ) call fits_file_delete(flatname)
call fits_file_duplicate(fits,flatname,status)
end if
call fits_delete_file(fits,status)
call fits_report_error(error_unit,status)
end block
deallocate(flats,flatnames,flat,flaterr,bitmask)
if( status == 0 ) then
stop 0
else
stop 'An error occurred during flat-field determination.'
end if
end program flatmaker
|