File: fitsstat.cpp

package info (click to toggle)
munipack 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 33,104 kB
  • sloc: cpp: 29,677; sh: 4,909; f90: 2,872; makefile: 278; python: 140; xml: 72; awk: 12
file content (144 lines) | stat: -rw-r--r-- 3,004 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*

  xmunipack - fits implementation of statistics

  Copyright © 2018-2021 F.Hroch (hroch@physics.muni.cz)

  This file is part of Munipack.

  Munipack is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  Munipack is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with Munipack.  If not, see <http://www.gnu.org/licenses/>.

*/

#include "fits.h"
#include <cfloat>
#include <wx/wx.h>
#include <limits>

using namespace std;

FitsArrayStat::FitsArrayStat(const FitsArray& a, int nskip):
  FitsArray(a),minmax_initialised(false),medmad_initialised(false),
  skip(nskip > 0 ? nskip : max(int(Npixels())/32768,1)),
  med(0.0),mad(0.0),xmin(0.0),xmax(0.0)
{
  wxASSERT(PixelData() && Naxis() > 0);
}

float FitsArrayStat::GetMin()
{
  if( ! minmax_initialised ) {
    Setup_minimax();
    minmax_initialised = true;
  }
  return xmin;
}
float FitsArrayStat::GetMax()
{
  if( ! minmax_initialised ) {
    Setup_minimax();
    minmax_initialised = true;
  }
  return xmax;
}

void FitsArrayStat::Setup_minimax()
{
  // maximum, minimum
  xmin = numeric_limits<double>::max();
  xmax = numeric_limits<double>::min();
  const float *d = PixelData();
  for(long i = 0; i < Npixels(); i++) {
    float x = d[i];
    if( x > xmax ) xmax = x;
    if( x < xmin ) xmin = x;
  }
  wxLogDebug("FitsArrayStat::Setup_minimax() %f %f",xmin,xmax);
}


float FitsArrayStat::GetMed()
{
  if( !medmad_initialised ) {
    Setup_medmad();
    medmad_initialised = true;
  }
  return med;
}

float FitsArrayStat::GetMad()
{
  if( !medmad_initialised ) {
    Setup_medmad();
    medmad_initialised = true;
  }
  return mad;
}

void FitsArrayStat::Setup_medmad()
{
  long nd = Npixels() / skip;
  float *d = new float[nd+1];

  // median
  for(long i = 0, j = 0; j < nd; i += skip, j++) {
    float x = Pixel(i);
    d[j] = x;
  }
  med = QMed(nd,d,nd/2+1);

  // mad = median of absolute deviations
  long n = 0;
  int imax = Npixels() - skip;
  for(int i = 0; n < nd && i < imax; i += skip) {
    float r = Pixel(i) - med;
    if( r > 0.0 )
      d[n++] = r;
  }
  mad = QMed(n,d,n/2+1);

  delete[] d;

  wxLogDebug("Setup_medmad(): %f %f %ld %f %d",mad,med,n,Pixel(1),skip);
}


float FitsArrayStat::QMed(long n, float *a, int k)
{
  float w,x;
  long l,r,i,j;

  x = 0.0;

  l = 0;
  r = n - 1;

  while( l < r ) {
    x = a[k]; i = l; j = r;

    do {

      while( a[i] < x && i < r) i++;
      while( x < a[j] && j > l) j--;

      if( i <= j ) { w = a[i]; a[i] = a[j]; a[j] = w; i++; j--; }

    } while ( i <= j );

    if( j < k ) l = i;
    if( k < i ) r = j;
  }

  return(x);
}