File: fitstone.cpp

package info (click to toggle)
munipack 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 33,104 kB
  • sloc: cpp: 29,677; sh: 4,909; f90: 2,872; makefile: 278; python: 140; xml: 72; awk: 12
file content (215 lines) | stat: -rw-r--r-- 5,536 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*

  xmunipack - pre-scaling

  Copyright © 2018-2025 F.Hroch (hroch@physics.muni.cz)

  This file is part of Munipack.

  Munipack is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  Munipack is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with Munipack.  If not, see <http://www.gnu.org/licenses/>.

*/

#include "fits.h"
#include <algorithm>
#include <limits>

#define QBLACK 0.25
#define QSENSE 0.95

using namespace std;

FitsTone::FitsTone(): initialised(false), black(0.0),qblack(QBLACK),
		      sense(1.0),rsense(1.0),refsense(1.0),refblack(0.0),
		      refqblack(QBLACK) {}

FitsTone::FitsTone(const FitsArray& array):
  initialised(false), black(0.0),qblack(QBLACK),sense(1.0),rsense(1.0),refsense(1.0),
  refblack(0.0),refqblack(QBLACK)
{
  wxASSERT(array.IsOk());

  bool iscolour = array.GetKey("CSPACE").Matches("*XYZ*") && array.GetDepth() == 3;

  wxLogDebug("FitsTone::FitsTone(const FitsArray&): %d %d",
	     int(array.GetDepth()),iscolour);

  int k = iscolour ? 1 : 0;
  long npix = array.GetWidth()*array.GetHeight();
  const float *data = array.PixelData() + k*npix;
  Setup(npix,data,iscolour);
}

FitsTone::FitsTone(const FitsTone& tone):
  initialised(tone.initialised), black(tone.black), qblack(tone.qblack),
  sense(tone.sense),rsense(tone.rsense),refsense(tone.refsense),
  refblack(tone.refblack),refqblack(tone.refqblack), cdf_back(tone.cdf_back) {}

FitsTone& FitsTone::operator = (const FitsTone& other)
{
  if( this != & other ) {
    initialised = other.initialised;
    black = other.black;
    qblack = other.qblack;
    sense = other.sense;
    rsense = other.rsense;
    refsense = other.refsense;
    refblack = other.refblack;
    refqblack = other.refqblack;
    cdf_back = other.cdf_back;
  }
  return *this;
}

FitsTone::FitsTone(long npix, const float *data):
  initialised(false), black(0.0),qblack(QBLACK),sense(1.0),rsense(1.0),refsense(1.0),
  refblack(0.0), refqblack(QBLACK)
{
  Setup(npix,data,false);
}

bool FitsTone::IsOk() const
{
  return initialised && cdf_back.IsOk();
}

void FitsTone::Setup(long npix, const float *data, bool iscolour)
{
  const double macheps = std::numeric_limits<float>::epsilon();
  wxASSERT(npix > 0 && data);

  const long nmax = 32768;
  const long skip = max(npix / nmax, long(1));
  const long nd = npix / skip;
  wxLogDebug("FitsTone::Setup %ld %ld %f",nd,skip,qblack);

  float *d = new float[nd+1];

  // Part I.
  // CDF over image grid,
  // if sparse field is analysed, it's CDF of sky and: Q(0.5) = sigma^2
  long m = 0;
  for(long i = 0; i < npix - skip && m < nd; i += skip)
    d[m++] = data[i];

  cdf_back = EmpiricalCDF(m,d);

  qblack = QBLACK;
  black = cdf_back.GetQuantile(qblack);
  if( iscolour )
    cdf_back.GetPositiveQuantile(qblack,black);

  float med = cdf_back.GetQuantile(0.5);
  float mad = (cdf_back.GetQuantile(0.75) - cdf_back.GetQuantile(0.25)) / 2;
  // MAD, computed this way, can be treacherous.

  // Part II
  // To estimate starlight, only pixels above the threshold are accepted,
  // the pixels are collected over a grid, eventually decreasing threshold,
  // to reach sufficient amount of data; the limit 16 for the side corresponds
  // with default value of nmax 32768.
  long n = 0;
  for(int kappa = 30; kappa >= 0; kappa=kappa-5 ) {
    n = 0;
    float thresh = (0.1*kappa) * mad / 0.6745;
    long side = 1;
    while( n < (nmax / 10) && side <= 16) {
      side = 2*side;
      long skip2 = max(skip / side,long(1));
      long imax = npix - skip2;
      for(long i = 0; n < nd && i < imax; i += skip2) {
	float r = data[i] - med;
	if( r > thresh )
	  d[n++] = r;
      }
    }
    wxLogDebug("kappa=%f thresh=%f n=%ld",0.1*kappa,thresh,n);
    if( n > 42 ) break;
  }

  if( n > 0 ) {
    EmpiricalCDF cdf_light(n,d);
    refsense = cdf_light.GetQuantile(QSENSE);
  }
  else if( cdf_back.IsOk() && med > 100*macheps ) {
    refsense = 3*(cdf_back.GetQuantile(QSENSE) - cdf_back.GetQuantile(1-QSENSE));
  }
  else {
    // uniform intensity
    refsense = black > 0 ? sqrt(black) : 1;
  }
  delete[] d;

  // last resort
  if( fabs(refsense) < 10*macheps ) refsense = 1;

    //    wxLogDebug("Estim: %f %f %f %f %ld %ld",black,med,sig,refsense,m,n);
  wxLogDebug("Median=%f MAD=%f Black=%f Qlight=%f n=%ld",med,mad,black,refsense,n);

  refblack = black;
  refqblack = refqblack;
  sense = refsense;
  rsense = 1;

  initialised = true;
}



void FitsTone::SetBlack(float b)
{
  black = b;
  qblack = cdf_back.GetInverse(black);
}

void FitsTone::SetSense(float s)
{
  wxASSERT(s > 0);
  sense = s;
  rsense = refsense / sense;
}

void FitsTone::SetQblack(float q)
{
  qblack = q;
  black = cdf_back.GetQuantile(qblack);
}

void FitsTone::SetRsense(float r)
{
  wxASSERT(r > 0);
  rsense = r;
  sense = refsense / rsense;
}


float *FitsTone::Scale(long n, const float *a) const
{
  wxASSERT(initialised);

  float *f = new float[n];
  for(long i = 0; i < n; i++) {
    float t = (a[i] - black) / sense;
    f[i] = max(t, 0.0f);
  }
  return f;
}

void FitsTone::Reset()
{
  qblack = refqblack;
  black = refblack;
  sense = refsense;
  rsense = 1.0;
}