File: test_munkres.py

package info (click to toggle)
munkres 1.1.4-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 168 kB
  • sloc: python: 636; sh: 8; makefile: 4
file content (231 lines) | stat: -rw-r--r-- 11,663 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from munkres import Munkres, DISALLOWED, UnsolvableMatrix
import munkres
import pytest

m = Munkres()

def _get_cost(matrix):
    indices = m.compute(matrix)
    return sum([matrix[row][column] for row, column in indices])

def test_documented_example():
    '''
    Test the matrix in the documented example.
    '''
    matrix = [[5, 9, 1],
              [10, 3, 2],
              [8, 7, 4]]
    cost = _get_cost(matrix)
    assert cost == 12

def float_example():
    '''
    Test a matrix with float values
    '''
    matrix = [[5.1, 9.2, 1.3],
              [10.4, 3.5, 2.6],
              [8.7, 7.8, 4.9]]
    cost = _get_cost(matrix)
    assert_almost_equal(cost, 13.5)

def test_5_x_5():
    matrix = [[12, 9, 27, 10, 23],
              [7, 13, 13, 30, 19],
              [25, 18, 26, 11, 26],
              [9, 28, 26, 23, 13],
              [16, 16, 24, 6, 9]]
    cost = _get_cost(matrix)
    assert cost == 51

def test_5_x_5_float():
    matrix = [[12.01, 9.02, 27.03, 10.04, 23.05],
              [7.06, 13.07, 13.08, 30.09, 19.1],
              [25.11, 18.12, 26.13, 11.14, 26.15],
              [9.16, 28.17, 26.18, 23.19, 13.2],
              [16.21, 16.22, 24.23, 6.24, 9.25]]
    cost = _get_cost(matrix)
    assert cost == pytest.approx(51.65)


def test_10_x_10():
    matrix = [[37, 34, 29, 26, 19, 8, 9, 23, 19, 29],
              [9, 28, 20, 8, 18, 20, 14, 33, 23, 14],
              [15, 26, 12, 28, 6, 17, 9, 13, 21, 7],
              [2, 8, 38, 36, 39, 5, 36, 2, 38, 27],
              [30, 3, 33, 16, 21, 39, 7, 23, 28, 36],
              [7, 5, 19, 22, 36, 36, 24, 19, 30, 2],
              [34, 20, 13, 36, 12, 33, 9, 10, 23, 5],
              [7, 37, 22, 39, 33, 39, 10, 3, 13, 26],
              [21, 25, 23, 39, 31, 37, 32, 33, 38, 1],
              [17, 34, 40, 10, 29, 37, 40, 3, 25, 3]]
    cost = _get_cost(matrix)
    assert cost == 66

def test_10_x_10_float():
    matrix = [[37.001, 34.002, 29.003, 26.004, 19.005, 8.006, 9.007, 23.008, 19.009, 29.01],
              [9.011, 28.012, 20.013, 8.014, 18.015, 20.016, 14.017, 33.018, 23.019, 14.02],
              [15.021, 26.022, 12.023, 28.024, 6.025, 17.026, 9.027, 13.028, 21.029, 7.03],
              [2.031, 8.032, 38.033, 36.034, 39.035, 5.036, 36.037, 2.038, 38.039, 27.04],
              [30.041, 3.042, 33.043, 16.044, 21.045, 39.046, 7.047, 23.048, 28.049, 36.05],
              [7.051, 5.052, 19.053, 22.054, 36.055, 36.056, 24.057, 19.058, 30.059, 2.06],
              [34.061, 20.062, 13.063, 36.064, 12.065, 33.066, 9.067, 10.068, 23.069, 5.07],
              [7.071, 37.072, 22.073, 39.074, 33.075, 39.076, 10.077, 3.078, 13.079, 26.08],
              [21.081, 25.082, 23.083, 39.084, 31.085, 37.086, 32.087, 33.088, 38.089, 1.09],
              [17.091, 34.092, 40.093, 10.094, 29.095, 37.096, 40.097, 3.098, 25.099, 3.1]]
    cost = _get_cost(matrix)
    assert cost == pytest.approx(66.505)

def test_20_x_20():
    matrix = [[5, 4, 3, 9, 8, 9, 3, 5, 6, 9, 4, 10, 3, 5, 6, 6, 1, 8, 10, 2],
              [10, 9, 9, 2, 8, 3, 9, 9, 10, 1, 7, 10, 8, 4, 2, 1, 4, 8, 4, 8],
              [10, 4, 4, 3, 1, 3, 5, 10, 6, 8, 6, 8, 4, 10, 7, 2, 4, 5, 1, 8],
              [2, 1, 4, 2, 3, 9, 3, 4, 7, 3, 4, 1, 3, 2, 9, 8, 6, 5, 7, 8],
              [3, 4, 4, 1, 4, 10, 1, 2, 6, 4, 5, 10, 2, 2, 3, 9, 10, 9, 9, 10],
              [1, 10, 1, 8, 1, 3, 1, 7, 1, 1, 2, 1, 2, 6, 3, 3, 4, 4, 8, 6],
              [1, 8, 7, 10, 10, 3, 4, 6, 1, 6, 6, 4, 9, 6, 9, 6, 4, 5, 4, 7],
              [8, 10, 3, 9, 4, 9, 3, 3, 4, 6, 4, 2, 6, 7, 7, 4, 4, 3, 4, 7],
              [1, 3, 8, 2, 6, 9, 2, 7, 4, 8, 10, 8, 10, 5, 1, 3, 10, 10, 2, 9],
              [2, 4, 1, 9, 2, 9, 7, 8, 2, 1, 4, 10, 5, 2, 7, 6, 5, 7, 2, 6],
              [4, 5, 1, 4, 2, 3, 3, 4, 1, 8, 8, 2, 6, 9, 5, 9, 6, 3, 9, 3],
              [3, 1, 1, 8, 6, 8, 8, 7, 9, 3, 2, 1, 8, 2, 4, 7, 3, 1, 2, 4],
              [5, 9, 8, 6, 10, 4, 10, 3, 4, 10, 10, 10, 1, 7, 8, 8, 7, 7, 8, 8],
              [1, 4, 6, 1, 6, 1, 2, 10, 5, 10, 2, 6, 2, 4, 5, 5, 3, 5, 1, 5],
              [5, 6, 9, 10, 6, 6, 10, 6, 4, 1, 5, 3, 9, 5, 2, 10, 9, 9, 5, 1],
              [10, 9, 4, 6, 9, 5, 3, 7, 10, 1, 6, 8, 1, 1, 10, 9, 5, 7, 7, 5],
              [2, 6, 6, 6, 6, 2, 9, 4, 7, 5, 3, 2, 10, 3, 4, 5, 10, 9, 1, 7],
              [5, 2, 4, 9, 8, 4, 8, 2, 4, 1, 3, 7, 6, 8, 1, 6, 8, 8, 10, 10],
              [9, 6, 3, 1, 8, 5, 7, 8, 7, 2, 1, 8, 2, 8, 3, 7, 4, 8, 7, 7],
              [8, 4, 4, 9, 7, 10, 6, 2, 1, 5, 8, 5, 1, 1, 1, 9, 1, 3, 5, 3]]
    cost = _get_cost(matrix)
    assert cost == 22

def test_20_x_20_float():
    matrix = [[5.0001, 4.0002, 3.0003, 9.0004, 8.0005, 9.0006, 3.0007, 5.0008, 6.0009, 9.001, 4.0011, 10.0012, 3.0013, 5.0014, 6.0015, 6.0016, 1.0017, 8.0018, 10.0019, 2.002],
              [10.0021, 9.0022, 9.0023, 2.0024, 8.0025, 3.0026, 9.0027, 9.0028, 10.0029, 1.003, 7.0031, 10.0032, 8.0033, 4.0034, 2.0035, 1.0036, 4.0037, 8.0038, 4.0039, 8.004],
              [10.0041, 4.0042, 4.0043, 3.0044, 1.0045, 3.0046, 5.0047, 10.0048, 6.0049, 8.005, 6.0051, 8.0052, 4.0053, 10.0054, 7.0055, 2.0056, 4.0057, 5.0058, 1.0059, 8.006],
              [2.0061, 1.0062, 4.0063, 2.0064, 3.0065, 9.0066, 3.0067, 4.0068, 7.0069, 3.007, 4.0071, 1.0072, 3.0073, 2.0074, 9.0075, 8.0076, 6.0077, 5.0078, 7.0079, 8.008],
              [3.0081, 4.0082, 4.0083, 1.0084, 4.0085, 10.0086, 1.0087, 2.0088, 6.0089, 4.009, 5.0091, 10.0092, 2.0093, 2.0094, 3.0095, 9.0096, 10.0097, 9.0098, 9.0099, 10.01],
              [1.0101, 10.0102, 1.0103, 8.0104, 1.0105, 3.0106, 1.0107, 7.0108, 1.0109, 1.011, 2.0111, 1.0112, 2.0113, 6.0114, 3.0115, 3.0116, 4.0117, 4.0118, 8.0119, 6.012],
              [1.0121, 8.0122, 7.0123, 10.0124, 10.0125, 3.0126, 4.0127, 6.0128, 1.0129, 6.013, 6.0131, 4.0132, 9.0133, 6.0134, 9.0135, 6.0136, 4.0137, 5.0138, 4.0139, 7.014],
              [8.0141, 10.0142, 3.0143, 9.0144, 4.0145, 9.0146, 3.0147, 3.0148, 4.0149, 6.015, 4.0151, 2.0152, 6.0153, 7.0154, 7.0155, 4.0156, 4.0157, 3.0158, 4.0159, 7.016],
              [1.0161, 3.0162, 8.0163, 2.0164, 6.0165, 9.0166, 2.0167, 7.0168, 4.0169, 8.017, 10.0171, 8.0172, 10.0173, 5.0174, 1.0175, 3.0176, 10.0177, 10.0178, 2.0179, 9.018],
              [2.0181, 4.0182, 1.0183, 9.0184, 2.0185, 9.0186, 7.0187, 8.0188, 2.0189, 1.019, 4.0191, 10.0192, 5.0193, 2.0194, 7.0195, 6.0196, 5.0197, 7.0198, 2.0199, 6.02],
              [4.0201, 5.0202, 1.0203, 4.0204, 2.0205, 3.0206, 3.0207, 4.0208, 1.0209, 8.021, 8.0211, 2.0212, 6.0213, 9.0214, 5.0215, 9.0216, 6.0217, 3.0218, 9.0219, 3.022],
              [3.0221, 1.0222, 1.0223, 8.0224, 6.0225, 8.0226, 8.0227, 7.0228, 9.0229, 3.023, 2.0231, 1.0232, 8.0233, 2.0234, 4.0235, 7.0236, 3.0237, 1.0238, 2.0239, 4.024],
              [5.0241, 9.0242, 8.0243, 6.0244, 10.0245, 4.0246, 10.0247, 3.0248, 4.0249, 10.025, 10.0251, 10.0252, 1.0253, 7.0254, 8.0255, 8.0256, 7.0257, 7.0258, 8.0259, 8.026],
              [1.0261, 4.0262, 6.0263, 1.0264, 6.0265, 1.0266, 2.0267, 10.0268, 5.0269, 10.027, 2.0271, 6.0272, 2.0273, 4.0274, 5.0275, 5.0276, 3.0277, 5.0278, 1.0279, 5.028],
              [5.0281, 6.0282, 9.0283, 10.0284, 6.0285, 6.0286, 10.0287, 6.0288, 4.0289, 1.029, 5.0291, 3.0292, 9.0293, 5.0294, 2.0295, 10.0296, 9.0297, 9.0298, 5.0299, 1.03],
              [10.0301, 9.0302, 4.0303, 6.0304, 9.0305, 5.0306, 3.0307, 7.0308, 10.0309, 1.031, 6.0311, 8, 1.0312, 1.0313, 10.0314, 9.0315, 5.0316, 7.0317, 7.0318, 5.0319, 1.032],
              [2.0321, 6.0322, 6.0323, 6.0324, 6.0325, 2.0326, 9.0327, 4.0328, 7.0329, 5.033, 3.0331, 2.0332, 10.0333, 3.0334, 4.0335, 5.0336, 10.0337, 9.0338, 1.0339, 7.034],
              [5.0341, 2.0342, 4.0343, 9.0344, 8.0345, 4.0346, 8.0347, 2.0348, 4.0349, 1.035, 3.0351, 7.0352, 6.0353, 8.0354, 1.0355, 6.0356, 8.0357, 8.0358, 10.0359, 10.036],
              [9.0361, 6.0362, 3.0363, 1.0364, 8.0365, 5.0366, 7.0367, 8.0368, 7.0369, 2.037, 1.0371, 8.0372, 2.0373, 8.0374, 3.0375, 7.0376, 4.0377, 8.0378, 7.0379, 7.038],
              [8.0381, 4.0382, 4.0383, 9.0384, 7.0385, 10.0386, 6.0387, 2.0388, 1.0389, 5.039, 8.0391, 5.0392, 1.0393, 1.0394, 1.0395, 9.0396, 1.0397, 3.0398, 5.0399, 3.04]]
    cost = _get_cost(matrix)
    '''
    Here, it becomes mandatory to set "places" argument, otherwise test might
    fails. It happens because float values in this example have more number of
    digits after decimal point than other float examples.
    '''
    assert cost == pytest.approx(20.362, rel=1e-3)

def test_disallowed():
    matrix = [[5, 9, DISALLOWED],
              [10, DISALLOWED, 2],
              [8, DISALLOWED, 4]]
    cost = _get_cost(matrix)
    assert cost == 19

def test_disallowed_float():
    matrix = [[5.1, 9.2, DISALLOWED],
              [10.3, DISALLOWED, 2.4],
              [8.5, DISALLOWED, 4.6]]
    cost = _get_cost(matrix)
    assert cost == pytest.approx(20.1)

def test_profit():
    profit_matrix = [[94, 66, 100, 18, 48],
                     [51, 63, 97, 79, 11],
                     [37, 53, 57, 78, 28],
                     [59, 43, 97, 88, 48],
                     [52, 19, 89, 60, 60]]
    import sys
    cost_matrix = munkres.make_cost_matrix(
        profit_matrix, lambda cost: sys.maxsize - cost
    )
    indices = m.compute(cost_matrix)
    profit = sum([profit_matrix[row][column] for row, column in indices])
    assert profit == 392

def test_profit_float():
    profit_matrix = [[94.01, 66.02, 100.03, 18.04, 48.05],
                     [51.06, 63.07, 97.08, 79.09, 11.1],
                     [37.11, 53.12, 57.13, 78.14, 28.15],
                     [59.16, 43.17, 97.18, 88.19, 48.2],
                     [52.21, 19.22, 89.23, 60.24, 60.25]]
    max_ = 2**32
    cost_matrix = munkres.make_cost_matrix(
        profit_matrix, lambda cost: max_ - cost
    )
    indices = m.compute(cost_matrix)
    profit = sum([profit_matrix[row][column] for row, column in indices])
    assert profit == pytest.approx(392.65)

def test_irregular():
    matrix = [[12, 26, 17],
              [49, 43, 36, 10, 5],
              [97, 9, 66, 34],
              [52, 42, 19, 36],
              [15, 93, 55, 80]]

    cost = _get_cost(matrix)
    assert cost == 43

def test_irregular_float():
    matrix = [[12.01, 26.02, 17.03],
              [49.04, 43.05, 36.06, 10.07, 5.08],
              [97.09, 9.1, 66.11, 34.12],
              [52.13, 42.14, 19.15, 36.16],
              [15.17, 93.18, 55.19, 80.2]]

    cost = _get_cost(matrix)
    assert cost == pytest.approx(43.42)

def test_rectangular():
    matrix = [[34, 26, 17, 12],
              [43, 43, 36, 10],
              [97, 47, 66, 34],
              [52, 42, 19, 36],
              [15, 93, 55, 80]]

    padded_matrix = m.pad_matrix(matrix, 0)
    padded_cost = _get_cost(padded_matrix)
    cost = _get_cost(matrix)
    assert padded_cost == cost
    assert cost == 70

def test_rectangular_float():
    matrix = [[34.01, 26.02, 17.03, 12.04],
              [43.05, 43.06, 36.07, 10.08],
              [97.09, 47.1, 66.11, 34.12],
              [52.13, 42.14, 19.15, 36.16],
              [15.17, 93.18, 55.19, 80.2]]

    padded_matrix = m.pad_matrix(matrix, 0)
    padded_cost = _get_cost(padded_matrix)
    cost = _get_cost(matrix)
    assert padded_cost == pytest.approx(cost)
    assert cost == pytest.approx(70.42)

def test_unsolvable():
    with pytest.raises(UnsolvableMatrix):
        matrix = [[5, 9, DISALLOWED],
                [10, DISALLOWED, 2],
                [DISALLOWED, DISALLOWED, DISALLOWED]]
        m.compute(matrix)

def test_unsolvable_float():
    with pytest.raises(UnsolvableMatrix):
        matrix = [[5.1, 9.2, DISALLOWED],
                [10.3, DISALLOWED, 2.4],
                [DISALLOWED, DISALLOWED, DISALLOWED]]
        m.compute(matrix)