1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
from munkres import Munkres, DISALLOWED, UnsolvableMatrix
import munkres
import pytest
m = Munkres()
def _get_cost(matrix):
indices = m.compute(matrix)
return sum([matrix[row][column] for row, column in indices])
def test_documented_example():
'''
Test the matrix in the documented example.
'''
matrix = [[5, 9, 1],
[10, 3, 2],
[8, 7, 4]]
cost = _get_cost(matrix)
assert cost == 12
def float_example():
'''
Test a matrix with float values
'''
matrix = [[5.1, 9.2, 1.3],
[10.4, 3.5, 2.6],
[8.7, 7.8, 4.9]]
cost = _get_cost(matrix)
assert_almost_equal(cost, 13.5)
def test_5_x_5():
matrix = [[12, 9, 27, 10, 23],
[7, 13, 13, 30, 19],
[25, 18, 26, 11, 26],
[9, 28, 26, 23, 13],
[16, 16, 24, 6, 9]]
cost = _get_cost(matrix)
assert cost == 51
def test_5_x_5_float():
matrix = [[12.01, 9.02, 27.03, 10.04, 23.05],
[7.06, 13.07, 13.08, 30.09, 19.1],
[25.11, 18.12, 26.13, 11.14, 26.15],
[9.16, 28.17, 26.18, 23.19, 13.2],
[16.21, 16.22, 24.23, 6.24, 9.25]]
cost = _get_cost(matrix)
assert cost == pytest.approx(51.65)
def test_10_x_10():
matrix = [[37, 34, 29, 26, 19, 8, 9, 23, 19, 29],
[9, 28, 20, 8, 18, 20, 14, 33, 23, 14],
[15, 26, 12, 28, 6, 17, 9, 13, 21, 7],
[2, 8, 38, 36, 39, 5, 36, 2, 38, 27],
[30, 3, 33, 16, 21, 39, 7, 23, 28, 36],
[7, 5, 19, 22, 36, 36, 24, 19, 30, 2],
[34, 20, 13, 36, 12, 33, 9, 10, 23, 5],
[7, 37, 22, 39, 33, 39, 10, 3, 13, 26],
[21, 25, 23, 39, 31, 37, 32, 33, 38, 1],
[17, 34, 40, 10, 29, 37, 40, 3, 25, 3]]
cost = _get_cost(matrix)
assert cost == 66
def test_10_x_10_float():
matrix = [[37.001, 34.002, 29.003, 26.004, 19.005, 8.006, 9.007, 23.008, 19.009, 29.01],
[9.011, 28.012, 20.013, 8.014, 18.015, 20.016, 14.017, 33.018, 23.019, 14.02],
[15.021, 26.022, 12.023, 28.024, 6.025, 17.026, 9.027, 13.028, 21.029, 7.03],
[2.031, 8.032, 38.033, 36.034, 39.035, 5.036, 36.037, 2.038, 38.039, 27.04],
[30.041, 3.042, 33.043, 16.044, 21.045, 39.046, 7.047, 23.048, 28.049, 36.05],
[7.051, 5.052, 19.053, 22.054, 36.055, 36.056, 24.057, 19.058, 30.059, 2.06],
[34.061, 20.062, 13.063, 36.064, 12.065, 33.066, 9.067, 10.068, 23.069, 5.07],
[7.071, 37.072, 22.073, 39.074, 33.075, 39.076, 10.077, 3.078, 13.079, 26.08],
[21.081, 25.082, 23.083, 39.084, 31.085, 37.086, 32.087, 33.088, 38.089, 1.09],
[17.091, 34.092, 40.093, 10.094, 29.095, 37.096, 40.097, 3.098, 25.099, 3.1]]
cost = _get_cost(matrix)
assert cost == pytest.approx(66.505)
def test_20_x_20():
matrix = [[5, 4, 3, 9, 8, 9, 3, 5, 6, 9, 4, 10, 3, 5, 6, 6, 1, 8, 10, 2],
[10, 9, 9, 2, 8, 3, 9, 9, 10, 1, 7, 10, 8, 4, 2, 1, 4, 8, 4, 8],
[10, 4, 4, 3, 1, 3, 5, 10, 6, 8, 6, 8, 4, 10, 7, 2, 4, 5, 1, 8],
[2, 1, 4, 2, 3, 9, 3, 4, 7, 3, 4, 1, 3, 2, 9, 8, 6, 5, 7, 8],
[3, 4, 4, 1, 4, 10, 1, 2, 6, 4, 5, 10, 2, 2, 3, 9, 10, 9, 9, 10],
[1, 10, 1, 8, 1, 3, 1, 7, 1, 1, 2, 1, 2, 6, 3, 3, 4, 4, 8, 6],
[1, 8, 7, 10, 10, 3, 4, 6, 1, 6, 6, 4, 9, 6, 9, 6, 4, 5, 4, 7],
[8, 10, 3, 9, 4, 9, 3, 3, 4, 6, 4, 2, 6, 7, 7, 4, 4, 3, 4, 7],
[1, 3, 8, 2, 6, 9, 2, 7, 4, 8, 10, 8, 10, 5, 1, 3, 10, 10, 2, 9],
[2, 4, 1, 9, 2, 9, 7, 8, 2, 1, 4, 10, 5, 2, 7, 6, 5, 7, 2, 6],
[4, 5, 1, 4, 2, 3, 3, 4, 1, 8, 8, 2, 6, 9, 5, 9, 6, 3, 9, 3],
[3, 1, 1, 8, 6, 8, 8, 7, 9, 3, 2, 1, 8, 2, 4, 7, 3, 1, 2, 4],
[5, 9, 8, 6, 10, 4, 10, 3, 4, 10, 10, 10, 1, 7, 8, 8, 7, 7, 8, 8],
[1, 4, 6, 1, 6, 1, 2, 10, 5, 10, 2, 6, 2, 4, 5, 5, 3, 5, 1, 5],
[5, 6, 9, 10, 6, 6, 10, 6, 4, 1, 5, 3, 9, 5, 2, 10, 9, 9, 5, 1],
[10, 9, 4, 6, 9, 5, 3, 7, 10, 1, 6, 8, 1, 1, 10, 9, 5, 7, 7, 5],
[2, 6, 6, 6, 6, 2, 9, 4, 7, 5, 3, 2, 10, 3, 4, 5, 10, 9, 1, 7],
[5, 2, 4, 9, 8, 4, 8, 2, 4, 1, 3, 7, 6, 8, 1, 6, 8, 8, 10, 10],
[9, 6, 3, 1, 8, 5, 7, 8, 7, 2, 1, 8, 2, 8, 3, 7, 4, 8, 7, 7],
[8, 4, 4, 9, 7, 10, 6, 2, 1, 5, 8, 5, 1, 1, 1, 9, 1, 3, 5, 3]]
cost = _get_cost(matrix)
assert cost == 22
def test_20_x_20_float():
matrix = [[5.0001, 4.0002, 3.0003, 9.0004, 8.0005, 9.0006, 3.0007, 5.0008, 6.0009, 9.001, 4.0011, 10.0012, 3.0013, 5.0014, 6.0015, 6.0016, 1.0017, 8.0018, 10.0019, 2.002],
[10.0021, 9.0022, 9.0023, 2.0024, 8.0025, 3.0026, 9.0027, 9.0028, 10.0029, 1.003, 7.0031, 10.0032, 8.0033, 4.0034, 2.0035, 1.0036, 4.0037, 8.0038, 4.0039, 8.004],
[10.0041, 4.0042, 4.0043, 3.0044, 1.0045, 3.0046, 5.0047, 10.0048, 6.0049, 8.005, 6.0051, 8.0052, 4.0053, 10.0054, 7.0055, 2.0056, 4.0057, 5.0058, 1.0059, 8.006],
[2.0061, 1.0062, 4.0063, 2.0064, 3.0065, 9.0066, 3.0067, 4.0068, 7.0069, 3.007, 4.0071, 1.0072, 3.0073, 2.0074, 9.0075, 8.0076, 6.0077, 5.0078, 7.0079, 8.008],
[3.0081, 4.0082, 4.0083, 1.0084, 4.0085, 10.0086, 1.0087, 2.0088, 6.0089, 4.009, 5.0091, 10.0092, 2.0093, 2.0094, 3.0095, 9.0096, 10.0097, 9.0098, 9.0099, 10.01],
[1.0101, 10.0102, 1.0103, 8.0104, 1.0105, 3.0106, 1.0107, 7.0108, 1.0109, 1.011, 2.0111, 1.0112, 2.0113, 6.0114, 3.0115, 3.0116, 4.0117, 4.0118, 8.0119, 6.012],
[1.0121, 8.0122, 7.0123, 10.0124, 10.0125, 3.0126, 4.0127, 6.0128, 1.0129, 6.013, 6.0131, 4.0132, 9.0133, 6.0134, 9.0135, 6.0136, 4.0137, 5.0138, 4.0139, 7.014],
[8.0141, 10.0142, 3.0143, 9.0144, 4.0145, 9.0146, 3.0147, 3.0148, 4.0149, 6.015, 4.0151, 2.0152, 6.0153, 7.0154, 7.0155, 4.0156, 4.0157, 3.0158, 4.0159, 7.016],
[1.0161, 3.0162, 8.0163, 2.0164, 6.0165, 9.0166, 2.0167, 7.0168, 4.0169, 8.017, 10.0171, 8.0172, 10.0173, 5.0174, 1.0175, 3.0176, 10.0177, 10.0178, 2.0179, 9.018],
[2.0181, 4.0182, 1.0183, 9.0184, 2.0185, 9.0186, 7.0187, 8.0188, 2.0189, 1.019, 4.0191, 10.0192, 5.0193, 2.0194, 7.0195, 6.0196, 5.0197, 7.0198, 2.0199, 6.02],
[4.0201, 5.0202, 1.0203, 4.0204, 2.0205, 3.0206, 3.0207, 4.0208, 1.0209, 8.021, 8.0211, 2.0212, 6.0213, 9.0214, 5.0215, 9.0216, 6.0217, 3.0218, 9.0219, 3.022],
[3.0221, 1.0222, 1.0223, 8.0224, 6.0225, 8.0226, 8.0227, 7.0228, 9.0229, 3.023, 2.0231, 1.0232, 8.0233, 2.0234, 4.0235, 7.0236, 3.0237, 1.0238, 2.0239, 4.024],
[5.0241, 9.0242, 8.0243, 6.0244, 10.0245, 4.0246, 10.0247, 3.0248, 4.0249, 10.025, 10.0251, 10.0252, 1.0253, 7.0254, 8.0255, 8.0256, 7.0257, 7.0258, 8.0259, 8.026],
[1.0261, 4.0262, 6.0263, 1.0264, 6.0265, 1.0266, 2.0267, 10.0268, 5.0269, 10.027, 2.0271, 6.0272, 2.0273, 4.0274, 5.0275, 5.0276, 3.0277, 5.0278, 1.0279, 5.028],
[5.0281, 6.0282, 9.0283, 10.0284, 6.0285, 6.0286, 10.0287, 6.0288, 4.0289, 1.029, 5.0291, 3.0292, 9.0293, 5.0294, 2.0295, 10.0296, 9.0297, 9.0298, 5.0299, 1.03],
[10.0301, 9.0302, 4.0303, 6.0304, 9.0305, 5.0306, 3.0307, 7.0308, 10.0309, 1.031, 6.0311, 8, 1.0312, 1.0313, 10.0314, 9.0315, 5.0316, 7.0317, 7.0318, 5.0319, 1.032],
[2.0321, 6.0322, 6.0323, 6.0324, 6.0325, 2.0326, 9.0327, 4.0328, 7.0329, 5.033, 3.0331, 2.0332, 10.0333, 3.0334, 4.0335, 5.0336, 10.0337, 9.0338, 1.0339, 7.034],
[5.0341, 2.0342, 4.0343, 9.0344, 8.0345, 4.0346, 8.0347, 2.0348, 4.0349, 1.035, 3.0351, 7.0352, 6.0353, 8.0354, 1.0355, 6.0356, 8.0357, 8.0358, 10.0359, 10.036],
[9.0361, 6.0362, 3.0363, 1.0364, 8.0365, 5.0366, 7.0367, 8.0368, 7.0369, 2.037, 1.0371, 8.0372, 2.0373, 8.0374, 3.0375, 7.0376, 4.0377, 8.0378, 7.0379, 7.038],
[8.0381, 4.0382, 4.0383, 9.0384, 7.0385, 10.0386, 6.0387, 2.0388, 1.0389, 5.039, 8.0391, 5.0392, 1.0393, 1.0394, 1.0395, 9.0396, 1.0397, 3.0398, 5.0399, 3.04]]
cost = _get_cost(matrix)
'''
Here, it becomes mandatory to set "places" argument, otherwise test might
fails. It happens because float values in this example have more number of
digits after decimal point than other float examples.
'''
assert cost == pytest.approx(20.362, rel=1e-3)
def test_disallowed():
matrix = [[5, 9, DISALLOWED],
[10, DISALLOWED, 2],
[8, DISALLOWED, 4]]
cost = _get_cost(matrix)
assert cost == 19
def test_disallowed_float():
matrix = [[5.1, 9.2, DISALLOWED],
[10.3, DISALLOWED, 2.4],
[8.5, DISALLOWED, 4.6]]
cost = _get_cost(matrix)
assert cost == pytest.approx(20.1)
def test_profit():
profit_matrix = [[94, 66, 100, 18, 48],
[51, 63, 97, 79, 11],
[37, 53, 57, 78, 28],
[59, 43, 97, 88, 48],
[52, 19, 89, 60, 60]]
import sys
cost_matrix = munkres.make_cost_matrix(
profit_matrix, lambda cost: sys.maxsize - cost
)
indices = m.compute(cost_matrix)
profit = sum([profit_matrix[row][column] for row, column in indices])
assert profit == 392
def test_profit_float():
profit_matrix = [[94.01, 66.02, 100.03, 18.04, 48.05],
[51.06, 63.07, 97.08, 79.09, 11.1],
[37.11, 53.12, 57.13, 78.14, 28.15],
[59.16, 43.17, 97.18, 88.19, 48.2],
[52.21, 19.22, 89.23, 60.24, 60.25]]
max_ = 2**32
cost_matrix = munkres.make_cost_matrix(
profit_matrix, lambda cost: max_ - cost
)
indices = m.compute(cost_matrix)
profit = sum([profit_matrix[row][column] for row, column in indices])
assert profit == pytest.approx(392.65)
def test_irregular():
matrix = [[12, 26, 17],
[49, 43, 36, 10, 5],
[97, 9, 66, 34],
[52, 42, 19, 36],
[15, 93, 55, 80]]
cost = _get_cost(matrix)
assert cost == 43
def test_irregular_float():
matrix = [[12.01, 26.02, 17.03],
[49.04, 43.05, 36.06, 10.07, 5.08],
[97.09, 9.1, 66.11, 34.12],
[52.13, 42.14, 19.15, 36.16],
[15.17, 93.18, 55.19, 80.2]]
cost = _get_cost(matrix)
assert cost == pytest.approx(43.42)
def test_rectangular():
matrix = [[34, 26, 17, 12],
[43, 43, 36, 10],
[97, 47, 66, 34],
[52, 42, 19, 36],
[15, 93, 55, 80]]
padded_matrix = m.pad_matrix(matrix, 0)
padded_cost = _get_cost(padded_matrix)
cost = _get_cost(matrix)
assert padded_cost == cost
assert cost == 70
def test_rectangular_float():
matrix = [[34.01, 26.02, 17.03, 12.04],
[43.05, 43.06, 36.07, 10.08],
[97.09, 47.1, 66.11, 34.12],
[52.13, 42.14, 19.15, 36.16],
[15.17, 93.18, 55.19, 80.2]]
padded_matrix = m.pad_matrix(matrix, 0)
padded_cost = _get_cost(padded_matrix)
cost = _get_cost(matrix)
assert padded_cost == pytest.approx(cost)
assert cost == pytest.approx(70.42)
def test_unsolvable():
with pytest.raises(UnsolvableMatrix):
matrix = [[5, 9, DISALLOWED],
[10, DISALLOWED, 2],
[DISALLOWED, DISALLOWED, DISALLOWED]]
m.compute(matrix)
def test_unsolvable_float():
with pytest.raises(UnsolvableMatrix):
matrix = [[5.1, 9.2, DISALLOWED],
[10.3, DISALLOWED, 2.4],
[DISALLOWED, DISALLOWED, DISALLOWED]]
m.compute(matrix)
|