1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
/*
This code is based on the code found from 7-Zip, which has a modified
version of the SHA-256 found from Crypto++ <http://www.cryptopp.com/>.
The code was modified a little to fit into liblzma and fitz.
This file has been put into the public domain.
You can do whatever you want with this file.
SHA-384 and SHA-512 were also taken from Crypto++ and adapted for fitz.
*/
#include "mupdf/fitz.h"
#include <string.h>
static inline int isbigendian(void)
{
static const int one = 1;
return *(char*)&one == 0;
}
static inline unsigned int bswap32(unsigned int num)
{
return ( (((num) << 24))
| (((num) << 8) & 0x00FF0000)
| (((num) >> 8) & 0x0000FF00)
| (((num) >> 24)) );
}
static inline uint64_t bswap64(uint64_t num)
{
return ( (((num) << 56))
| (((num) << 40) & 0x00FF000000000000ULL)
| (((num) << 24) & 0x0000FF0000000000ULL)
| (((num) << 8) & 0x000000FF00000000ULL)
| (((num) >> 8) & 0x00000000FF000000ULL)
| (((num) >> 24) & 0x0000000000FF0000ULL)
| (((num) >> 40) & 0x000000000000FF00ULL)
| (((num) >> 56)) );
}
/* At least on x86, GCC is able to optimize this to a rotate instruction. */
#define rotr(num, amount) ((num) >> (amount) | (num) << (8 * sizeof(num) - (amount)))
#define blk0(i) (W[i] = data[i])
#define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \
+ s0(W[(i - 15) & 15]))
#define Ch(x, y, z) (z ^ (x & (y ^ z)))
#define Maj(x, y, z) ((x & y) | (z & (x | y)))
#define a(i) T[(0 - i) & 7]
#define b(i) T[(1 - i) & 7]
#define c(i) T[(2 - i) & 7]
#define d(i) T[(3 - i) & 7]
#define e(i) T[(4 - i) & 7]
#define f(i) T[(5 - i) & 7]
#define g(i) T[(6 - i) & 7]
#define h(i) T[(7 - i) & 7]
#define R(i) \
h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + K[i + j] \
+ (j ? blk2(i) : blk0(i)); \
d(i) += h(i); \
h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
/* For SHA256 */
#define S0(x) (rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22))
#define S1(x) (rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25))
#define s0(x) (rotr(x, 7) ^ rotr(x, 18) ^ (x >> 3))
#define s1(x) (rotr(x, 17) ^ rotr(x, 19) ^ (x >> 10))
static const unsigned int SHA256_K[64] = {
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};
static void
transform256(unsigned int state[8], unsigned int data[16])
{
const unsigned int *K = SHA256_K;
unsigned int W[16];
unsigned int T[8];
unsigned int j;
/* ensure big-endian integers */
if (!isbigendian())
for (j = 0; j < 16; j++)
data[j] = bswap32(data[j]);
/* Copy state[] to working vars. */
memcpy(T, state, sizeof(T));
/* 64 operations, partially loop unrolled */
for (j = 0; j < 64; j += 16) {
R( 0); R( 1); R( 2); R( 3);
R( 4); R( 5); R( 6); R( 7);
R( 8); R( 9); R(10); R(11);
R(12); R(13); R(14); R(15);
}
/* Add the working vars back into state[]. */
state[0] += a(0);
state[1] += b(0);
state[2] += c(0);
state[3] += d(0);
state[4] += e(0);
state[5] += f(0);
state[6] += g(0);
state[7] += h(0);
}
#undef S0
#undef S1
#undef s0
#undef s1
void fz_sha256_init(fz_sha256 *context)
{
context->count[0] = context->count[1] = 0;
context->state[0] = 0x6A09E667;
context->state[1] = 0xBB67AE85;
context->state[2] = 0x3C6EF372;
context->state[3] = 0xA54FF53A;
context->state[4] = 0x510E527F;
context->state[5] = 0x9B05688C;
context->state[6] = 0x1F83D9AB;
context->state[7] = 0x5BE0CD19;
}
void fz_sha256_update(fz_sha256 *context, const unsigned char *input, size_t inlen)
{
/* Copy the input data into a properly aligned temporary buffer.
* This way we can be called with arbitrarily sized buffers
* (no need to be multiple of 64 bytes), and the code works also
* on architectures that don't allow unaligned memory access. */
while (inlen > 0)
{
const unsigned int copy_start = context->count[0] & 0x3F;
unsigned int copy_size = 64 - copy_start;
if (copy_size > inlen)
copy_size = (unsigned int)inlen;
memcpy(context->buffer.u8 + copy_start, input, copy_size);
input += copy_size;
inlen -= copy_size;
context->count[0] += copy_size;
/* carry overflow from low to high */
if (context->count[0] < copy_size)
context->count[1]++;
if ((context->count[0] & 0x3F) == 0)
transform256(context->state, context->buffer.u32);
}
}
void fz_sha256_final(fz_sha256 *context, unsigned char digest[32])
{
/* Add padding as described in RFC 3174 (it describes SHA-1 but
* the same padding style is used for SHA-256 too). */
unsigned int j = context->count[0] & 0x3F;
context->buffer.u8[j++] = 0x80;
while (j != 56)
{
if (j == 64)
{
transform256(context->state, context->buffer.u32);
j = 0;
}
context->buffer.u8[j++] = 0x00;
}
/* Convert the message size from bytes to bits. */
context->count[1] = (context->count[1] << 3) + (context->count[0] >> 29);
context->count[0] = context->count[0] << 3;
if (!isbigendian())
{
context->buffer.u32[14] = bswap32(context->count[1]);
context->buffer.u32[15] = bswap32(context->count[0]);
}
else
{
context->buffer.u32[14] = context->count[1];
context->buffer.u32[15] = context->count[0];
}
transform256(context->state, context->buffer.u32);
if (!isbigendian())
for (j = 0; j < 8; j++)
context->state[j] = bswap32(context->state[j]);
memcpy(digest, &context->state[0], 32);
memset(context, 0, sizeof(fz_sha256));
}
/* For SHA512 */
#define S0(x) (rotr(x, 28) ^ rotr(x, 34) ^ rotr(x, 39))
#define S1(x) (rotr(x, 14) ^ rotr(x, 18) ^ rotr(x, 41))
#define s0(x) (rotr(x, 1) ^ rotr(x, 8) ^ (x >> 7))
#define s1(x) (rotr(x, 19) ^ rotr(x, 61) ^ (x >> 6))
static const uint64_t SHA512_K[80] = {
0x428A2F98D728AE22ULL, 0x7137449123EF65CDULL,
0xB5C0FBCFEC4D3B2FULL, 0xE9B5DBA58189DBBCULL,
0x3956C25BF348B538ULL, 0x59F111F1B605D019ULL,
0x923F82A4AF194F9BULL, 0xAB1C5ED5DA6D8118ULL,
0xD807AA98A3030242ULL, 0x12835B0145706FBEULL,
0x243185BE4EE4B28CULL, 0x550C7DC3D5FFB4E2ULL,
0x72BE5D74F27B896FULL, 0x80DEB1FE3B1696B1ULL,
0x9BDC06A725C71235ULL, 0xC19BF174CF692694ULL,
0xE49B69C19EF14AD2ULL, 0xEFBE4786384F25E3ULL,
0x0FC19DC68B8CD5B5ULL, 0x240CA1CC77AC9C65ULL,
0x2DE92C6F592B0275ULL, 0x4A7484AA6EA6E483ULL,
0x5CB0A9DCBD41FBD4ULL, 0x76F988DA831153B5ULL,
0x983E5152EE66DFABULL, 0xA831C66D2DB43210ULL,
0xB00327C898FB213FULL, 0xBF597FC7BEEF0EE4ULL,
0xC6E00BF33DA88FC2ULL, 0xD5A79147930AA725ULL,
0x06CA6351E003826FULL, 0x142929670A0E6E70ULL,
0x27B70A8546D22FFCULL, 0x2E1B21385C26C926ULL,
0x4D2C6DFC5AC42AEDULL, 0x53380D139D95B3DFULL,
0x650A73548BAF63DEULL, 0x766A0ABB3C77B2A8ULL,
0x81C2C92E47EDAEE6ULL, 0x92722C851482353BULL,
0xA2BFE8A14CF10364ULL, 0xA81A664BBC423001ULL,
0xC24B8B70D0F89791ULL, 0xC76C51A30654BE30ULL,
0xD192E819D6EF5218ULL, 0xD69906245565A910ULL,
0xF40E35855771202AULL, 0x106AA07032BBD1B8ULL,
0x19A4C116B8D2D0C8ULL, 0x1E376C085141AB53ULL,
0x2748774CDF8EEB99ULL, 0x34B0BCB5E19B48A8ULL,
0x391C0CB3C5C95A63ULL, 0x4ED8AA4AE3418ACBULL,
0x5B9CCA4F7763E373ULL, 0x682E6FF3D6B2B8A3ULL,
0x748F82EE5DEFB2FCULL, 0x78A5636F43172F60ULL,
0x84C87814A1F0AB72ULL, 0x8CC702081A6439ECULL,
0x90BEFFFA23631E28ULL, 0xA4506CEBDE82BDE9ULL,
0xBEF9A3F7B2C67915ULL, 0xC67178F2E372532BULL,
0xCA273ECEEA26619CULL, 0xD186B8C721C0C207ULL,
0xEADA7DD6CDE0EB1EULL, 0xF57D4F7FEE6ED178ULL,
0x06F067AA72176FBAULL, 0x0A637DC5A2C898A6ULL,
0x113F9804BEF90DAEULL, 0x1B710B35131C471BULL,
0x28DB77F523047D84ULL, 0x32CAAB7B40C72493ULL,
0x3C9EBE0A15C9BEBCULL, 0x431D67C49C100D4CULL,
0x4CC5D4BECB3E42B6ULL, 0x597F299CFC657E2AULL,
0x5FCB6FAB3AD6FAECULL, 0x6C44198C4A475817ULL,
};
static void
transform512(uint64_t state[8], uint64_t data[16])
{
const uint64_t *K = SHA512_K;
uint64_t W[16];
uint64_t T[8];
unsigned int j;
/* ensure big-endian integers */
if (!isbigendian())
for (j = 0; j < 16; j++)
data[j] = bswap64(data[j]);
/* Copy state[] to working vars. */
memcpy(T, state, sizeof(T));
/* 80 operations, partially loop unrolled */
for (j = 0; j < 80; j+= 16) {
R( 0); R( 1); R( 2); R( 3);
R( 4); R( 5); R( 6); R( 7);
R( 8); R( 9); R(10); R(11);
R(12); R(13); R(14); R(15);
}
/* Add the working vars back into state[]. */
state[0] += a(0);
state[1] += b(0);
state[2] += c(0);
state[3] += d(0);
state[4] += e(0);
state[5] += f(0);
state[6] += g(0);
state[7] += h(0);
}
#undef S0
#undef S1
#undef s0
#undef s1
void fz_sha512_init(fz_sha512 *context)
{
context->count[0] = context->count[1] = 0;
context->state[0] = 0x6A09E667F3BCC908ull;
context->state[1] = 0xBB67AE8584CAA73Bull;
context->state[2] = 0x3C6EF372FE94F82Bull;
context->state[3] = 0xA54FF53A5F1D36F1ull;
context->state[4] = 0x510E527FADE682D1ull;
context->state[5] = 0x9B05688C2B3E6C1Full;
context->state[6] = 0x1F83D9ABFB41BD6Bull;
context->state[7] = 0x5BE0CD19137E2179ull;
}
void fz_sha512_update(fz_sha512 *context, const unsigned char *input, size_t inlen)
{
/* Copy the input data into a properly aligned temporary buffer.
* This way we can be called with arbitrarily sized buffers
* (no need to be multiple of 128 bytes), and the code works also
* on architectures that don't allow unaligned memory access. */
while (inlen > 0)
{
const unsigned int copy_start = context->count[0] & 0x7F;
unsigned int copy_size = 128 - copy_start;
if (copy_size > inlen)
copy_size = (unsigned int)inlen;
memcpy(context->buffer.u8 + copy_start, input, copy_size);
input += copy_size;
inlen -= copy_size;
context->count[0] += copy_size;
/* carry overflow from low to high */
if (context->count[0] < copy_size)
context->count[1]++;
if ((context->count[0] & 0x7F) == 0)
transform512(context->state, context->buffer.u64);
}
}
void fz_sha512_final(fz_sha512 *context, unsigned char digest[64])
{
/* Add padding as described in RFC 3174 (it describes SHA-1 but
* the same padding style is used for SHA-512 too). */
unsigned int j = context->count[0] & 0x7F;
context->buffer.u8[j++] = 0x80;
while (j != 112)
{
if (j == 128)
{
transform512(context->state, context->buffer.u64);
j = 0;
}
context->buffer.u8[j++] = 0x00;
}
/* Convert the message size from bytes to bits. */
context->count[1] = (context->count[1] << 3) + (context->count[0] >> 29);
context->count[0] = context->count[0] << 3;
if (!isbigendian())
{
context->buffer.u64[14] = bswap64(context->count[1]);
context->buffer.u64[15] = bswap64(context->count[0]);
}
else
{
context->buffer.u64[14] = context->count[1];
context->buffer.u64[15] = context->count[0];
}
transform512(context->state, context->buffer.u64);
if (!isbigendian())
for (j = 0; j < 8; j++)
context->state[j] = bswap64(context->state[j]);
memcpy(digest, &context->state[0], 64);
memset(context, 0, sizeof(fz_sha512));
}
void fz_sha384_init(fz_sha384 *context)
{
context->count[0] = context->count[1] = 0;
context->state[0] = 0xCBBB9D5DC1059ED8ull;
context->state[1] = 0x629A292A367CD507ull;
context->state[2] = 0x9159015A3070DD17ull;
context->state[3] = 0x152FECD8F70E5939ull;
context->state[4] = 0x67332667FFC00B31ull;
context->state[5] = 0x8EB44A8768581511ull;
context->state[6] = 0xDB0C2E0D64F98FA7ull;
context->state[7] = 0x47B5481DBEFA4FA4ull;
}
void fz_sha384_update(fz_sha384 *context, const unsigned char *input, size_t inlen)
{
fz_sha512_update(context, input, inlen);
}
void fz_sha384_final(fz_sha384 *context, unsigned char digest[64])
{
fz_sha512_final(context, digest);
}
|