1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
#include "muscle.h"
#include "msa.h"
#include "profile.h"
#include "objscore.h"
#define TRACE 0
#define TEST_SPFAST 0
static SCORE ScoreSeqPair(const MSA &msa1, unsigned uSeqIndex1,
const MSA &msa2, unsigned uSeqIndex2, WEIGHT w, SCORE MatchScore[] = 0)
{
const unsigned uColCount = msa1.GetColCount();
const unsigned uColCount2 = msa2.GetColCount();
if (uColCount != uColCount2)
Quit("ScoreSeqPair, different lengths");
SCORE scoreTotal = 0;
bool bGapping1 = false;
bool bGapping2 = false;
for (unsigned uColIndex = 0; uColIndex < uColCount; ++uColIndex)
{
bool bGap1 = msa1.IsGap(uSeqIndex1, uColIndex);
bool bGap2 = msa2.IsGap(uSeqIndex2, uColIndex);
if (bGap1 && bGap2)
continue;
if (bGap1)
{
if (!bGapping1)
{
scoreTotal += g_scoreGapOpen;
bGapping1 = true;
}
//else
// scoreTotal += g_scoreGapExtend;
continue;
}
else if (bGap2)
{
if (!bGapping2)
{
scoreTotal += g_scoreGapOpen;
bGapping2 = true;
}
//else
// scoreTotal += g_scoreGapExtend;
continue;
}
bGapping1 = false;
bGapping2 = false;
if (msa1.IsWildcard(uSeqIndex1, uColIndex) ||
msa2.IsWildcard(uSeqIndex2, uColIndex))
continue;
unsigned uLetter1 = msa1.GetLetter(uSeqIndex1, uColIndex);
unsigned uLetter2 = msa2.GetLetter(uSeqIndex2, uColIndex);
SCORE scoreMatch = (*g_ptrScoreMatrix)[uLetter1][uLetter2];
if (0 != MatchScore)
MatchScore[uColIndex] += w*scoreMatch;
scoreTotal += scoreMatch;
}
return scoreTotal;
}
// The usual sum-of-pairs objective score: sum the score
// of the alignment of each pair of sequences.
SCORE ObjScoreSP(const MSA &msa, SCORE MatchScore[])
{
if (0 != MatchScore)
{
const unsigned uColCount = msa.GetColCount();
for (unsigned uColIndex = 0; uColIndex < uColCount; ++uColIndex)
MatchScore[uColIndex] = 0;
}
const unsigned uSeqCount = msa.GetSeqCount();
SCORE scoreTotal = 0;
unsigned uPairCount = 0;
#if TRACE
Log(" Score Weight Weight Total\n");
Log("---------- ------ ------ ----------\n");
#endif
for (unsigned uSeqIndex1 = 0; uSeqIndex1 < uSeqCount; ++uSeqIndex1)
{
const WEIGHT w1 = msa.GetSeqWeight(uSeqIndex1);
for (unsigned uSeqIndex2 = uSeqIndex1 + 1; uSeqIndex2 < uSeqCount; ++uSeqIndex2)
{
const WEIGHT w2 = msa.GetSeqWeight(uSeqIndex2);
const WEIGHT w = w1*w2;
SCORE scorePair = ScoreSeqPair(msa, uSeqIndex1, msa, uSeqIndex2, w,
MatchScore);
scoreTotal += w1*w2*scorePair;
++uPairCount;
#if TRACE
Log("%10.2f %6.3f %6.3f %10.2f >%s >%s\n",
scorePair,
w1,
w2,
scorePair*w1*w2,
msa.GetSeqName(uSeqIndex1),
msa.GetSeqName(uSeqIndex2));
#endif
}
}
#if TEST_SPFAST
{
SCORE f = ObjScoreSPFast(msa);
Log("Fast = %.6g\n", f);
Log("Brute = %.6g\n", scoreTotal);
if (BTEq(f, scoreTotal))
Log("Agree\n");
else
Log("** DISAGREE **\n");
}
#endif
// return scoreTotal / uPairCount;
return scoreTotal;
}
// Objective score defined as the dynamic programming score.
// Input is two alignments, which must be of the same length.
// Result is the same profile-profile score that is optimized
// by dynamic programming.
SCORE ObjScoreDP(const MSA &msa1, const MSA &msa2, SCORE MatchScore[])
{
const unsigned uColCount = msa1.GetColCount();
if (msa2.GetColCount() != uColCount)
Quit("ObjScoreDP, must be same length");
const unsigned uColCount1 = msa1.GetColCount();
const unsigned uColCount2 = msa2.GetColCount();
bool bTermGapsFree1 = TermGapsFree(uColCount1, uColCount2);
bool bTermGapsFree2 = TermGapsFree(uColCount2, uColCount1);
const ProfPos *PA = ProfileFromMSA(msa1, g_scoreGapOpen, bTermGapsFree1);
const ProfPos *PB = ProfileFromMSA(msa2, g_scoreGapOpen, bTermGapsFree2);
return ObjScoreDP_Profs(PA, PB, uColCount1, MatchScore);
}
SCORE ObjScoreDP_Profs(const ProfPos *PA, const ProfPos *PB, unsigned uColCount,
SCORE MatchScore[])
{
#if TRACE
Log("Profile 1:\n");
ListProfile(PA, uColCount, &msa1);
Log("Profile 2:\n");
ListProfile(PB, uColCount, &msa2);
#endif
SCORE scoreTotal = 0;
for (unsigned uColIndex = 0; uColIndex < uColCount; ++uColIndex)
{
const ProfPos &PPA = PA[uColIndex];
const ProfPos &PPB = PB[uColIndex];
SCORE scoreGap = 0;
SCORE scoreMatch = 0;
// If gapped column...
if (PPA.m_bAllGaps && PPB.m_bAllGaps)
scoreGap = 0;
else if (PPA.m_bAllGaps)
{
if (uColCount - 1 == uColIndex || !PA[uColIndex+1].m_bAllGaps)
scoreGap = PPB.m_scoreGapClose;
if (0 == uColIndex || !PA[uColIndex-1].m_bAllGaps)
scoreGap += PPB.m_scoreGapOpen;
//if (0 == scoreGap)
// scoreGap = PPB.m_scoreGapExtend;
}
else if (PPB.m_bAllGaps)
{
if (uColCount - 1 == uColIndex || !PB[uColIndex+1].m_bAllGaps)
scoreGap = PPA.m_scoreGapClose;
if (0 == uColIndex || !PB[uColIndex-1].m_bAllGaps)
scoreGap += PPA.m_scoreGapOpen;
//if (0 == scoreGap)
// scoreGap = PPA.m_scoreGapExtend;
}
else
scoreMatch = ScoreProfPos2(PPA, PPB);
if (0 != MatchScore)
MatchScore[uColIndex] = scoreMatch;
scoreTotal += scoreMatch + scoreGap;
extern bool g_bTracePPScore;
extern MSA *g_ptrPPScoreMSA1;
extern MSA *g_ptrPPScoreMSA2;
if (g_bTracePPScore)
{
const MSA &msa1 = *g_ptrPPScoreMSA1;
const MSA &msa2 = *g_ptrPPScoreMSA2;
const unsigned uSeqCount1 = msa1.GetSeqCount();
const unsigned uSeqCount2 = msa2.GetSeqCount();
for (unsigned n = 0; n < uSeqCount1; ++n)
Log("%c", msa1.GetChar(n, uColIndex));
Log(" ");
for (unsigned n = 0; n < uSeqCount2; ++n)
Log("%c", msa2.GetChar(n, uColIndex));
Log(" %10.3f", scoreMatch);
if (scoreGap != 0)
Log(" %10.3f", scoreGap);
Log("\n");
}
}
delete[] PA;
delete[] PB;
return scoreTotal;
}
// Objective score defined as the sum of profile-sequence
// scores for each sequence in the alignment. The profile
// is computed from the entire alignment, so this includes
// the score of each sequence against itself. This is to
// avoid recomputing the profile each time, so we reduce
// complexity but introduce a questionable approximation.
// The goal is to see if we can exploit the apparent
// improvement in performance of log-expectation score
// over the usual sum-of-pairs by optimizing this
// objective score in the iterative refinement stage.
SCORE ObjScorePS(const MSA &msa, SCORE MatchScore[])
{
if (g_PPScore != PPSCORE_LE)
Quit("FastScoreMSA_LASimple: LA");
const unsigned uSeqCount = msa.GetSeqCount();
const unsigned uColCount = msa.GetColCount();
const ProfPos *Prof = ProfileFromMSA(msa, g_scoreGapOpen, false);
if (0 != MatchScore)
for (unsigned uColIndex = 0; uColIndex < uColCount; ++uColIndex)
MatchScore[uColIndex] = 0;
SCORE scoreTotal = 0;
for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
{
const WEIGHT weightSeq = msa.GetSeqWeight(uSeqIndex);
SCORE scoreSeq = 0;
for (unsigned uColIndex = 0; uColIndex < uColCount; ++uColIndex)
{
const ProfPos &PP = Prof[uColIndex];
if (msa.IsGap(uSeqIndex, uColIndex))
{
bool bOpen = (0 == uColIndex ||
!msa.IsGap(uSeqIndex, uColIndex - 1));
bool bClose = (uColCount - 1 == uColIndex ||
!msa.IsGap(uSeqIndex, uColIndex + 1));
if (bOpen)
scoreSeq += PP.m_scoreGapOpen;
if (bClose)
scoreSeq += PP.m_scoreGapClose;
//if (!bOpen && !bClose)
// scoreSeq += PP.m_scoreGapExtend;
}
else if (msa.IsWildcard(uSeqIndex, uColIndex))
continue;
else
{
unsigned uLetter = msa.GetLetter(uSeqIndex, uColIndex);
const SCORE scoreMatch = PP.m_AAScores[uLetter];
if (0 != MatchScore)
MatchScore[uColIndex] += weightSeq*scoreMatch;
scoreSeq += scoreMatch;
}
}
scoreTotal += weightSeq*scoreSeq;
}
delete[] Prof;
return scoreTotal;
}
// The XP score is the sum of the score of each pair of
// sequences between two profiles which are aligned to
// each other. Notice that for two given profiles aligned
// in different ways, the difference in XP score must be
// the same as the difference in SP score because the
// score of a pair of sequences in one profile doesn't
// depend on the alignment.
SCORE ObjScoreXP(const MSA &msa1, const MSA &msa2)
{
const unsigned uColCount1 = msa1.GetColCount();
const unsigned uColCount2 = msa2.GetColCount();
if (uColCount1 != uColCount2)
Quit("ObjScoreXP, alignment lengths differ %u %u", uColCount1, uColCount2);
const unsigned uSeqCount1 = msa1.GetSeqCount();
const unsigned uSeqCount2 = msa2.GetSeqCount();
#if TRACE
Log(" Score Weight Weight Total\n");
Log("---------- ------ ------ ----------\n");
#endif
SCORE scoreTotal = 0;
unsigned uPairCount = 0;
for (unsigned uSeqIndex1 = 0; uSeqIndex1 < uSeqCount1; ++uSeqIndex1)
{
const WEIGHT w1 = msa1.GetSeqWeight(uSeqIndex1);
for (unsigned uSeqIndex2 = 0; uSeqIndex2 < uSeqCount2; ++uSeqIndex2)
{
const WEIGHT w2 = msa2.GetSeqWeight(uSeqIndex2);
const WEIGHT w = w1*w2;
SCORE scorePair = ScoreSeqPair(msa1, uSeqIndex1, msa2, uSeqIndex2, w);
scoreTotal += w1*w2*scorePair;
++uPairCount;
#if TRACE
Log("%10.2f %6.3f %6.3f %10.2f >%s >%s\n",
scorePair,
w1,
w2,
scorePair*w1*w2,
msa1.GetSeqName(uSeqIndex1),
msa2.GetSeqName(uSeqIndex2));
#endif
}
}
if (0 == uPairCount)
Quit("0 == uPairCount");
#if TRACE
Log("msa1=\n");
msa1.LogMe();
Log("msa2=\n");
msa2.LogMe();
Log("XP=%g\n", scoreTotal);
#endif
// return scoreTotal / uPairCount;
return scoreTotal;
}
|