1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
#include "muscle.h"
#include "tree.h"
#include <stdio.h>
#define TRACE 0
void ClusterByHeight(const Tree &tree, double dMaxHeight, unsigned Subtrees[],
unsigned *ptruSubtreeCount)
{
if (!tree.IsRooted())
Quit("ClusterByHeight: requires rooted tree");
#if TRACE
Log("ClusterByHeight, max height=%g\n", dMaxHeight);
#endif
unsigned uSubtreeCount = 0;
const unsigned uNodeCount = tree.GetNodeCount();
for (unsigned uNodeIndex = 0; uNodeIndex < uNodeCount; ++uNodeIndex)
{
if (tree.IsRoot(uNodeIndex))
continue;
unsigned uParent = tree.GetParent(uNodeIndex);
double dHeight = tree.GetNodeHeight(uNodeIndex);
double dParentHeight = tree.GetNodeHeight(uParent);
#if TRACE
Log("Node %3u Height %5.2f ParentHeight %5.2f\n",
uNodeIndex, dHeight, dParentHeight);
#endif
if (dParentHeight > dMaxHeight && dHeight <= dMaxHeight)
{
Subtrees[uSubtreeCount] = uNodeIndex;
#if TRACE
Log("Subtree[%u]=%u\n", uSubtreeCount, uNodeIndex);
#endif
++uSubtreeCount;
}
}
*ptruSubtreeCount = uSubtreeCount;
}
static void ClusterBySubfamCount_Iteration(const Tree &tree, unsigned Subfams[],
unsigned uCount)
{
// Find highest child node of current set of subfamilies.
double dHighestHeight = -1e20;
int iParentSubscript = -1;
for (int n = 0; n < (int) uCount; ++n)
{
const unsigned uNodeIndex = Subfams[n];
if (tree.IsLeaf(uNodeIndex))
continue;
const unsigned uLeft = tree.GetLeft(uNodeIndex);
const double dHeightLeft = tree.GetNodeHeight(uLeft);
if (dHeightLeft > dHighestHeight)
{
dHighestHeight = dHeightLeft;
iParentSubscript = n;
}
const unsigned uRight = tree.GetRight(uNodeIndex);
const double dHeightRight = tree.GetNodeHeight(uRight);
if (dHeightRight > dHighestHeight)
{
dHighestHeight = dHeightRight;
iParentSubscript = n;
}
}
if (-1 == iParentSubscript)
Quit("CBSFCIter: failed to find highest child");
const unsigned uNodeIndex = Subfams[iParentSubscript];
const unsigned uLeft = tree.GetLeft(uNodeIndex);
const unsigned uRight = tree.GetRight(uNodeIndex);
// Delete parent by replacing with left child
Subfams[iParentSubscript] = uLeft;
// Append right child to list
Subfams[uCount] = uRight;
#if TRACE
{
Log("Iter %3u:", uCount);
for (unsigned n = 0; n < uCount; ++n)
Log(" %u", Subfams[n]);
Log("\n");
}
#endif
}
// Divide a tree containing N leaves into k families by
// cutting the tree at a horizontal line at some height.
// Each internal node defines a height for the cut,
// considering all internal nodes enumerates all distinct
// cuts. Visit internal nodes in decreasing order of height.
// Visiting the node corresponds to moving the horizontal
// line down to cut the tree at the height of that node.
// We consider the cut to be "infinitestimally below"
// the node, so the effect is to remove the current node
// from the list of subfamilies and add its two children.
// We must visit a parent before its children (so care may
// be needed to handle zero edge lengths properly).
// We assume that N is small, and write dumb O(N^2) code.
// More efficient strategies are possible for large N
// by maintaining a list of nodes sorted by height.
void ClusterBySubfamCount(const Tree &tree, unsigned uSubfamCount,
unsigned Subfams[], unsigned *ptruSubfamCount)
{
const unsigned uNodeCount = tree.GetNodeCount();
const unsigned uLeafCount = (uNodeCount + 1)/2;
// Special case: empty tree
if (0 == uNodeCount)
{
*ptruSubfamCount = 0;
return;
}
// Special case: more subfamilies than leaves
if (uSubfamCount >= uLeafCount)
{
for (unsigned n = 0; n < uLeafCount; ++n)
Subfams[n] = n;
*ptruSubfamCount = uLeafCount;
return;
}
// Initialize list of subfamilies to be root
Subfams[0] = tree.GetRootNodeIndex();
// Iterate
for (unsigned i = 1; i < uSubfamCount; ++i)
ClusterBySubfamCount_Iteration(tree, Subfams, i);
*ptruSubfamCount = uSubfamCount;
}
static void GetLeavesRecurse(const Tree &tree, unsigned uNodeIndex,
unsigned Leaves[], unsigned &uLeafCount /* in-out */)
{
if (tree.IsLeaf(uNodeIndex))
{
Leaves[uLeafCount] = uNodeIndex;
++uLeafCount;
return;
}
const unsigned uLeft = tree.GetLeft(uNodeIndex);
const unsigned uRight = tree.GetRight(uNodeIndex);
GetLeavesRecurse(tree, uLeft, Leaves, uLeafCount);
GetLeavesRecurse(tree, uRight, Leaves, uLeafCount);
}
void GetLeaves(const Tree &tree, unsigned uNodeIndex, unsigned Leaves[],
unsigned *ptruLeafCount)
{
unsigned uLeafCount = 0;
GetLeavesRecurse(tree, uNodeIndex, Leaves, uLeafCount);
*ptruLeafCount = uLeafCount;
}
void Tree::PruneTree(const Tree &tree, unsigned Subfams[],
unsigned uSubfamCount)
{
if (!tree.IsRooted())
Quit("Tree::PruneTree: requires rooted tree");
Clear();
m_uNodeCount = 2*uSubfamCount - 1;
InitCache(m_uNodeCount);
const unsigned uUnprunedNodeCount = tree.GetNodeCount();
unsigned *uUnprunedToPrunedIndex = new unsigned[uUnprunedNodeCount];
unsigned *uPrunedToUnprunedIndex = new unsigned[m_uNodeCount];
for (unsigned n = 0; n < uUnprunedNodeCount; ++n)
uUnprunedToPrunedIndex[n] = NULL_NEIGHBOR;
for (unsigned n = 0; n < m_uNodeCount; ++n)
uPrunedToUnprunedIndex[n] = NULL_NEIGHBOR;
// Create mapping between unpruned and pruned node indexes
unsigned uInternalNodeIndex = uSubfamCount;
for (unsigned uSubfamIndex = 0; uSubfamIndex < uSubfamCount; ++uSubfamIndex)
{
unsigned uUnprunedNodeIndex = Subfams[uSubfamIndex];
uUnprunedToPrunedIndex[uUnprunedNodeIndex] = uSubfamIndex;
uPrunedToUnprunedIndex[uSubfamIndex] = uUnprunedNodeIndex;
for (;;)
{
uUnprunedNodeIndex = tree.GetParent(uUnprunedNodeIndex);
if (tree.IsRoot(uUnprunedNodeIndex))
break;
// Already visited this node?
if (NULL_NEIGHBOR != uUnprunedToPrunedIndex[uUnprunedNodeIndex])
break;
uUnprunedToPrunedIndex[uUnprunedNodeIndex] = uInternalNodeIndex;
uPrunedToUnprunedIndex[uInternalNodeIndex] = uUnprunedNodeIndex;
++uInternalNodeIndex;
}
}
const unsigned uUnprunedRootIndex = tree.GetRootNodeIndex();
uUnprunedToPrunedIndex[uUnprunedRootIndex] = uInternalNodeIndex;
uPrunedToUnprunedIndex[uInternalNodeIndex] = uUnprunedRootIndex;
#if TRACE
{
Log("Pruned to unpruned:\n");
for (unsigned i = 0; i < m_uNodeCount; ++i)
Log(" [%u]=%u", i, uPrunedToUnprunedIndex[i]);
Log("\n");
Log("Unpruned to pruned:\n");
for (unsigned i = 0; i < uUnprunedNodeCount; ++i)
{
unsigned n = uUnprunedToPrunedIndex[i];
if (n != NULL_NEIGHBOR)
Log(" [%u]=%u", i, n);
}
Log("\n");
}
#endif
if (uInternalNodeIndex != m_uNodeCount - 1)
Quit("Tree::PruneTree, Internal error");
// Nodes 0, 1 ... are the leaves
for (unsigned uSubfamIndex = 0; uSubfamIndex < uSubfamCount; ++uSubfamIndex)
{
char szName[32];
sprintf(szName, "Subfam_%u", uSubfamIndex + 1);
m_ptrName[uSubfamIndex] = strsave(szName);
}
for (unsigned uPrunedNodeIndex = uSubfamCount; uPrunedNodeIndex < m_uNodeCount;
++uPrunedNodeIndex)
{
unsigned uUnprunedNodeIndex = uPrunedToUnprunedIndex[uPrunedNodeIndex];
const unsigned uUnprunedLeft = tree.GetLeft(uUnprunedNodeIndex);
const unsigned uUnprunedRight = tree.GetRight(uUnprunedNodeIndex);
const unsigned uPrunedLeft = uUnprunedToPrunedIndex[uUnprunedLeft];
const unsigned uPrunedRight = uUnprunedToPrunedIndex[uUnprunedRight];
const double dLeftLength =
tree.GetEdgeLength(uUnprunedNodeIndex, uUnprunedLeft);
const double dRightLength =
tree.GetEdgeLength(uUnprunedNodeIndex, uUnprunedRight);
m_uNeighbor2[uPrunedNodeIndex] = uPrunedLeft;
m_uNeighbor3[uPrunedNodeIndex] = uPrunedRight;
m_dEdgeLength1[uPrunedLeft] = dLeftLength;
m_dEdgeLength1[uPrunedRight] = dRightLength;
m_uNeighbor1[uPrunedLeft] = uPrunedNodeIndex;
m_uNeighbor1[uPrunedRight] = uPrunedNodeIndex;
m_bHasEdgeLength1[uPrunedLeft] = true;
m_bHasEdgeLength1[uPrunedRight] = true;
m_dEdgeLength2[uPrunedNodeIndex] = dLeftLength;
m_dEdgeLength3[uPrunedNodeIndex] = dRightLength;
m_bHasEdgeLength2[uPrunedNodeIndex] = true;
m_bHasEdgeLength3[uPrunedNodeIndex] = true;
}
m_uRootNodeIndex = uUnprunedToPrunedIndex[uUnprunedRootIndex];
m_bRooted = true;
Validate();
delete[] uUnprunedToPrunedIndex;
}
void LeafIndexesToIds(const Tree &tree, const unsigned Leaves[], unsigned uCount,
unsigned Ids[])
{
for (unsigned n = 0; n < uCount; ++n)
Ids[n] = tree.GetLeafId(Leaves[n]);
}
|