1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
#include "muscle.h"
#include "msa.h"
#include "profile.h"
#define TRACE 0
#define PAF 0
bool TermGapsFree(unsigned uLength1, unsigned uLength2)
{
if (g_bTermGapsHalf)
return true;
if (!g_bTermGapsHalfLonger)
return false;
return uLength1 > uLength2;
}
void SortCounts(const FCOUNT fcCounts[], unsigned SortOrder[])
{
static unsigned InitialSortOrder[MAX_ALPHA] =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
};
memcpy(SortOrder, InitialSortOrder, g_AlphaSize*sizeof(unsigned));
bool bAny = true;
while (bAny)
{
bAny = false;
for (unsigned n = 0; n < g_AlphaSize - 1; ++n)
{
unsigned i1 = SortOrder[n];
unsigned i2 = SortOrder[n+1];
if (fcCounts[i1] < fcCounts[i2])
{
SortOrder[n+1] = i1;
SortOrder[n] = i2;
bAny = true;
}
}
}
}
static unsigned AminoGroupFromFCounts(const FCOUNT fcCounts[])
{
bool bAny = false;
unsigned uConsensusResidueGroup = RESIDUE_GROUP_MULTIPLE;
for (unsigned uLetter = 0; uLetter < 20; ++uLetter)
{
if (0 == fcCounts[uLetter])
continue;
const unsigned uResidueGroup = ResidueGroup[uLetter];
if (bAny)
{
if (uResidueGroup != uConsensusResidueGroup)
return RESIDUE_GROUP_MULTIPLE;
}
else
{
bAny = true;
uConsensusResidueGroup = uResidueGroup;
}
}
return uConsensusResidueGroup;
}
static unsigned NucleoGroupFromFCounts(const FCOUNT fcCounts[])
{
bool bAny = false;
unsigned uConsensusResidueGroup = RESIDUE_GROUP_MULTIPLE;
for (unsigned uLetter = 0; uLetter < 4; ++uLetter)
{
if (0 == fcCounts[uLetter])
continue;
const unsigned uResidueGroup = uLetter;
if (bAny)
{
if (uResidueGroup != uConsensusResidueGroup)
return RESIDUE_GROUP_MULTIPLE;
}
else
{
bAny = true;
uConsensusResidueGroup = uResidueGroup;
}
}
return uConsensusResidueGroup;
}
unsigned ResidueGroupFromFCounts(const FCOUNT fcCounts[])
{
switch (g_Alpha)
{
case ALPHA_Amino:
return AminoGroupFromFCounts(fcCounts);
case ALPHA_Nucleo:
return NucleoGroupFromFCounts(fcCounts);
}
Quit("ResidueGroupFromFCounts: bad alpha");
return 0;
}
ProfPos *ProfileFromMSA(const MSA &a, SCORE scoreGapOpen, bool bTermGapsFree)
{
const unsigned uSeqCount = a.GetSeqCount();
const unsigned uColCount = a.GetColCount();
// Yuck -- cast away const (inconsistent design here).
SetMSAWeightsMuscle((MSA &) a);
ProfPos *Pos = new ProfPos[uColCount];
unsigned uHydrophobicRunLength = 0;
for (unsigned uColIndex = 0; uColIndex < uColCount; ++uColIndex)
{
ProfPos &PP = Pos[uColIndex];
PP.m_bAllGaps = a.IsGapColumn(uColIndex);
FCOUNT fcGapStart;
FCOUNT fcGapEnd;
FCOUNT fcGapExtend;
FCOUNT fOcc;
a.GetFractionalWeightedCounts(uColIndex, g_bNormalizeCounts, PP.m_fcCounts,
&fcGapStart, &fcGapEnd, &fcGapExtend, &fOcc,
&PP.m_LL, &PP.m_LG, &PP.m_GL, &PP.m_GG);
PP.m_fOcc = fOcc;
SortCounts(PP.m_fcCounts, PP.m_uSortOrder);
PP.m_uResidueGroup = ResidueGroupFromFCounts(PP.m_fcCounts);
for (unsigned i = 0; i < g_AlphaSize; ++i)
{
SCORE scoreSum = 0;
for (unsigned j = 0; j < 20; ++j)
scoreSum += PP.m_fcCounts[j]*(*g_ptrScoreMatrix)[i][j];
PP.m_AAScores[i] = scoreSum;
}
SCORE sStartOcc = (SCORE) (1.0 - fcGapStart);
SCORE sEndOcc = (SCORE) (1.0 - fcGapEnd);
PP.m_fcStartOcc = sStartOcc;
PP.m_fcEndOcc = sEndOcc;
PP.m_scoreGapOpen = sStartOcc*scoreGapOpen/2;
PP.m_scoreGapClose = sEndOcc*scoreGapOpen/2;
// PP.m_scoreGapExtend = (SCORE) ((1.0 - fcGapExtend)*scoreGapExtend);
#if PAF
if (ALHPA_Amino == g_Alpha && sStartOcc > 0.5)
{
extern SCORE PAFactor(const FCOUNT fcCounts[]);
SCORE paf = PAFactor(PP.m_fcCounts);
PP.m_scoreGapOpen *= paf;
PP.m_scoreGapClose *= paf;
}
#endif
if (bTermGapsFree)
{
if (0 == uColIndex)
PP.m_scoreGapOpen = 0;
if (uColCount - 1 == uColIndex)
PP.m_scoreGapClose = 0;
}
}
if (ALPHA_Amino == g_Alpha)
Hydro(Pos, uColCount);
#if TRACE
{
Log("ProfileFromMSA\n");
ListProfile(Pos, uColCount, &a);
}
#endif
return Pos;
}
static void LogF(FCOUNT f)
{
if (f > -0.00001 && f < 0.00001)
Log(" ");
else
Log(" %5.3f", f);
}
void ListProfile(const ProfPos *Prof, unsigned uLength, const MSA *ptrMSA)
{
Log(" Pos Occ LL LG GL GG Open Close\n");
Log(" --- --- -- -- -- -- ---- -----\n");
for (unsigned n = 0; n < uLength; ++n)
{
const ProfPos &PP = Prof[n];
Log("%5u", n);
LogF(PP.m_fOcc);
LogF(PP.m_LL);
LogF(PP.m_LG);
LogF(PP.m_GL);
LogF(PP.m_GG);
Log(" %5.1f", -PP.m_scoreGapOpen);
Log(" %5.1f", -PP.m_scoreGapClose);
if (0 != ptrMSA)
{
const unsigned uSeqCount = ptrMSA->GetSeqCount();
Log(" ");
for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
Log("%c", ptrMSA->GetChar(uSeqIndex, n));
}
Log("\n");
}
Log("\n");
Log(" Pos G");
for (unsigned n = 0; n < g_AlphaSize; ++n)
Log(" %c", LetterExToChar(n));
Log("\n");
Log(" --- -");
for (unsigned n = 0; n < g_AlphaSize; ++n)
Log(" -----");
Log("\n");
for (unsigned n = 0; n < uLength; ++n)
{
const ProfPos &PP = Prof[n];
Log("%5u", n);
if (-1 == PP.m_uResidueGroup)
Log(" -", PP.m_uResidueGroup);
else
Log(" %d", PP.m_uResidueGroup);
for (unsigned uLetter = 0; uLetter < g_AlphaSize; ++uLetter)
{
FCOUNT f = PP.m_fcCounts[uLetter];
if (f == 0.0)
Log(" ");
else
Log(" %5.3f", f);
}
if (0 != ptrMSA)
{
const unsigned uSeqCount = ptrMSA->GetSeqCount();
Log(" ");
for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
Log("%c", ptrMSA->GetChar(uSeqIndex, n));
}
Log("\n");
}
}
|