1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
#include "muscle.h"
#include <math.h>
PROB ScoreToProb(SCORE Score)
{
if (MINUS_INFINITY >= Score)
return 0.0;
return (PROB) pow(2.0, (double) Score/INTSCALE);
}
static const double log2e = log2(exp(1.0));
double lnTolog2(double ln)
{
return ln*log2e;
}
double log2(double x)
{
if (0 == x)
return MINUS_INFINITY;
static const double dInvLn2 = 1.0/log(2);
// Multiply by inverse of log(2) just in case multiplication
// is faster than division.
return log(x)*dInvLn2;
}
SCORE ProbToScore(PROB Prob)
{
if (0.0 == Prob)
return MINUS_INFINITY;
// return (SCORE) floor(INTSCALE*log2(Prob));
return (SCORE) log2(Prob);
}
WEIGHT DoubleToWeight(double d)
{
assert(d >= 0);
return (WEIGHT) (INTSCALE*d);
}
double WeightToDouble(WEIGHT w)
{
return (double) w / (double) INTSCALE;
}
SCORE DoubleToScore(double d)
{
return (SCORE)(d*(double) INTSCALE);
}
bool ScoreEq(SCORE s1, SCORE s2)
{
return BTEq(s1, s2);
}
static bool BTEq2(BASETYPE b1, BASETYPE b2)
{
double diff = fabs(b1 - b2);
if (diff < 0.0001)
return true;
double sum = fabs(b1) + fabs(b2);
return diff/sum < 0.005;
}
bool BTEq(double b1, double b2)
{
return BTEq2((BASETYPE) b1, (BASETYPE) b2);
}
const double dLn2 = log(2);
// pow2(x)=2^x
double pow2(double x)
{
if (MINUS_INFINITY == x)
return 0;
return exp(x*dLn2);
}
// lp2(x) = log2(1 + 2^-x), x >= 0
double lp2(double x)
{
return log2(1 + pow2(-x));
}
// SumLog(x, y) = log2(2^x + 2^y)
SCORE SumLog(SCORE x, SCORE y)
{
return (SCORE) log2(pow2(x) + pow2(y));
}
// SumLog(x, y, z) = log2(2^x + 2^y + 2^z)
SCORE SumLog(SCORE x, SCORE y, SCORE z)
{
return (SCORE) log2(pow2(x) + pow2(y) + pow2(z));
}
// SumLog(w, x, y, z) = log2(2^w + 2^x + 2^y + 2^z)
SCORE SumLog(SCORE w, SCORE x, SCORE y, SCORE z)
{
return (SCORE) log2(pow2(w) + pow2(x) + pow2(y) + pow2(z));
}
SCORE lp2Fast(SCORE x)
{
assert(x >= 0);
const int iTableSize = 1000;
const double dRange = 20.0;
const double dScale = dRange/iTableSize;
static SCORE dValue[iTableSize];
static bool bInit = false;
if (!bInit)
{
for (int i = 0; i < iTableSize; ++i)
dValue[i] = (SCORE) lp2(i*dScale);
bInit = true;
}
if (x >= dRange)
return 0.0;
int i = (int) (x/dScale);
assert(i >= 0 && i < iTableSize);
SCORE dResult = dValue[i];
assert(BTEq(dResult, lp2(x)));
return dResult;
}
// SumLog(x, y) = log2(2^x + 2^y)
SCORE SumLogFast(SCORE x, SCORE y)
{
if (MINUS_INFINITY == x)
{
if (MINUS_INFINITY == y)
return MINUS_INFINITY;
return y;
}
else if (MINUS_INFINITY == y)
return x;
SCORE dResult;
if (x > y)
dResult = x + lp2Fast(x-y);
else
dResult = y + lp2Fast(y-x);
assert(SumLog(x, y) == dResult);
return dResult;
}
SCORE SumLogFast(SCORE x, SCORE y, SCORE z)
{
SCORE dResult = SumLogFast(x, SumLogFast(y, z));
assert(SumLog(x, y, z) == dResult);
return dResult;
}
SCORE SumLogFast(SCORE w, SCORE x, SCORE y, SCORE z)
{
SCORE dResult = SumLogFast(SumLogFast(w, x), SumLogFast(y, z));
assert(SumLog(w, x, y, z) == dResult);
return dResult;
}
double VecSum(const double v[], unsigned n)
{
double dSum = 0.0;
for (unsigned i = 0; i < n; ++i)
dSum += v[i];
return dSum;
}
void Normalize(PROB p[], unsigned n)
{
unsigned i;
PROB dSum = 0.0;
for (i = 0; i < n; ++i)
dSum += p[i];
if (0.0 == dSum)
Quit("Normalize, sum=0");
for (i = 0; i < n; ++i)
p[i] /= dSum;
}
void NormalizeUnlessZero(PROB p[], unsigned n)
{
unsigned i;
PROB dSum = 0.0;
for (i = 0; i < n; ++i)
dSum += p[i];
if (0.0 == dSum)
return;
for (i = 0; i < n; ++i)
p[i] /= dSum;
}
void Normalize(PROB p[], unsigned n, double dRequiredTotal)
{
unsigned i;
double dSum = 0.0;
for (i = 0; i < n; ++i)
dSum += p[i];
if (0.0 == dSum)
Quit("Normalize, sum=0");
double dFactor = dRequiredTotal / dSum;
for (i = 0; i < n; ++i)
p[i] *= (PROB) dFactor;
}
bool VectorIsZero(const double dValues[], unsigned n)
{
for (unsigned i = 0; i < n; ++i)
if (dValues[i] != 0.0)
return false;
return true;
}
void VectorSet(double dValues[], unsigned n, double d)
{
for (unsigned i = 0; i < n; ++i)
dValues[i] = d;
}
bool VectorIsZero(const float dValues[], unsigned n)
{
for (unsigned i = 0; i < n; ++i)
if (dValues[i] != 0.0)
return false;
return true;
}
void VectorSet(float dValues[], unsigned n, float d)
{
for (unsigned i = 0; i < n; ++i)
dValues[i] = d;
}
double Correl(const double P[], const double Q[], unsigned uCount)
{
double dSumP = 0.0;
double dSumQ = 0.0;
for (unsigned n = 0; n < uCount; ++n)
{
dSumP += P[n];
dSumQ += Q[n];
}
const double dMeanP = dSumP/uCount;
const double dMeanQ = dSumQ/uCount;
double dSum1 = 0.0;
double dSum2 = 0.0;
double dSum3 = 0.0;
for (unsigned n = 0; n < uCount; ++n)
{
const double dDiffP = P[n] - dMeanP;
const double dDiffQ = Q[n] - dMeanQ;
dSum1 += dDiffP*dDiffQ;
dSum2 += dDiffP*dDiffP;
dSum3 += dDiffQ*dDiffQ;
}
if (0 == dSum1)
return 0;
const double dCorrel = dSum1 / sqrt(dSum2*dSum3);
return dCorrel;
}
float Correl(const float P[], const float Q[], unsigned uCount)
{
float dSumP = 0.0;
float dSumQ = 0.0;
for (unsigned n = 0; n < uCount; ++n)
{
dSumP += P[n];
dSumQ += Q[n];
}
const float dMeanP = dSumP/uCount;
const float dMeanQ = dSumQ/uCount;
float dSum1 = 0.0;
float dSum2 = 0.0;
float dSum3 = 0.0;
for (unsigned n = 0; n < uCount; ++n)
{
const float dDiffP = P[n] - dMeanP;
const float dDiffQ = Q[n] - dMeanQ;
dSum1 += dDiffP*dDiffQ;
dSum2 += dDiffP*dDiffP;
dSum3 += dDiffQ*dDiffQ;
}
if (0 == dSum1)
return 0;
const float dCorrel = dSum1 / (float) sqrt(dSum2*dSum3);
return dCorrel;
}
// Simple (but slow) function to compute Pearson ranks
// that allows for ties. Correctness and simplicity
// are priorities over speed here.
void Rank(const float P[], float Ranks[], unsigned uCount)
{
for (unsigned n = 0; n < uCount; ++n)
{
unsigned uNumberGreater = 0;
unsigned uNumberEqual = 0;
unsigned uNumberLess = 0;
double dValue = P[n];
for (unsigned i = 0; i < uCount; ++i)
{
double v = P[i];
if (v == dValue)
++uNumberEqual;
else if (v < dValue)
++uNumberLess;
else
++uNumberGreater;
}
assert(uNumberEqual >= 1);
assert(uNumberEqual + uNumberLess + uNumberGreater == uCount);
Ranks[n] = (float) (1 + uNumberLess + (uNumberEqual - 1)/2.0);
}
}
void Rank(const double P[], double Ranks[], unsigned uCount)
{
for (unsigned n = 0; n < uCount; ++n)
{
unsigned uNumberGreater = 0;
unsigned uNumberEqual = 0;
unsigned uNumberLess = 0;
double dValue = P[n];
for (unsigned i = 0; i < uCount; ++i)
{
double v = P[i];
if (v == dValue)
++uNumberEqual;
else if (v < dValue)
++uNumberLess;
else
++uNumberGreater;
}
assert(uNumberEqual >= 1);
assert(uNumberEqual + uNumberLess + uNumberGreater == uCount);
Ranks[n] = (double) (1 + uNumberLess + (uNumberEqual - 1)/2.0);
}
}
FCOUNT SumCounts(const FCOUNT Counts[])
{
FCOUNT Sum = 0;
for (int i = 0; i < 20; ++i)
Sum += Counts[i];
return Sum;
}
|