File: msa2.cpp

package info (click to toggle)
muscle 3.60-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 1,384 kB
  • ctags: 2,079
  • sloc: cpp: 26,452; xml: 185; makefile: 101
file content (531 lines) | stat: -rw-r--r-- 14,064 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
#include "muscle.h"
#include "msa.h"
#include "seqvect.h"
#include "profile.h"
#include "tree.h"

// These global variables are a hack to allow the tree
// dependent iteration code to communicate the edge
// used to divide the tree. The three-way weighting
// scheme needs to know this edge in order to compute
// sequence weights.
static const Tree *g_ptrMuscleTree = 0;
unsigned g_uTreeSplitNode1 = NULL_NEIGHBOR;
unsigned g_uTreeSplitNode2 = NULL_NEIGHBOR;

void MSA::GetFractionalWeightedCounts(unsigned uColIndex, bool bNormalize,
  FCOUNT fcCounts[], FCOUNT *ptrfcGapStart, FCOUNT *ptrfcGapEnd,
  FCOUNT *ptrfcGapExtend, FCOUNT *ptrfOcc,
  FCOUNT *ptrfcLL, FCOUNT *ptrfcLG, FCOUNT *ptrfcGL, FCOUNT *ptrfcGG) const
	{
	const unsigned uSeqCount = GetSeqCount();
	const unsigned uColCount = GetColCount();

	memset(fcCounts, 0, g_AlphaSize*sizeof(FCOUNT));
	WEIGHT wTotal = 0;
	FCOUNT fGap = 0;
	for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
		{
		const WEIGHT w = GetSeqWeight(uSeqIndex);
		if (IsGap(uSeqIndex, uColIndex))
			{
			fGap += w;
			continue;
			}
		else if (IsWildcard(uSeqIndex, uColIndex))
			{
			const unsigned uLetter = GetLetterEx(uSeqIndex, uColIndex);
			switch (g_Alpha)
				{
			case ALPHA_Amino:
				switch (uLetter)
					{
				case AX_B:		// D or N
					fcCounts[AX_D] += w/2;
					fcCounts[AX_N] += w/2;
					break;
				case AX_Z:		// E or Q
					fcCounts[AX_E] += w/2;
					fcCounts[AX_Q] += w/2;
					break;
				default:		// any
					{
					const FCOUNT f = w/20;
					for (unsigned uLetter = 0; uLetter < 20; ++uLetter)
						fcCounts[uLetter] += f;
					break;
					}
					}
				break;

			case ALPHA_DNA:
			case ALPHA_RNA:
				switch (uLetter)
					{
				case AX_R:	// G or A
					fcCounts[NX_G] += w/2;
					fcCounts[NX_A] += w/2;
					break;
				case AX_Y:	// C or T/U
					fcCounts[NX_C] += w/2;
					fcCounts[NX_T] += w/2;
					break;
				default:	// any
					const FCOUNT f = w/20;
					for (unsigned uLetter = 0; uLetter < 4; ++uLetter)
						fcCounts[uLetter] += f;
					break;
					}
				break;

			default:
				Quit("Alphabet %d not supported", g_Alpha);
				}
			continue;
			}
		unsigned uLetter = GetLetter(uSeqIndex, uColIndex);
		fcCounts[uLetter] += w;
		wTotal += w;
		}
	*ptrfOcc = (float) (1.0 - fGap);

	if (bNormalize && wTotal > 0)
		{
		if (wTotal > 1.001)
			Quit("wTotal=%g\n", wTotal);
		for (unsigned uLetter = 0; uLetter < g_AlphaSize; ++uLetter)
			fcCounts[uLetter] /= wTotal;
//		AssertNormalized(fcCounts);
		}

	FCOUNT fcStartCount = 0;
	if (uColIndex == 0)
		{
		for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
			if (IsGap(uSeqIndex, uColIndex))
				fcStartCount += GetSeqWeight(uSeqIndex);
		}
	else
		{
		for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
			if (IsGap(uSeqIndex, uColIndex) && !IsGap(uSeqIndex, uColIndex - 1))
				fcStartCount += GetSeqWeight(uSeqIndex);
		}

	FCOUNT fcEndCount = 0;
	if (uColCount - 1 == uColIndex)
		{
		for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
			if (IsGap(uSeqIndex, uColIndex))
				fcEndCount += GetSeqWeight(uSeqIndex);
		}
	else
		{
		for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
			if (IsGap(uSeqIndex, uColIndex) && !IsGap(uSeqIndex, uColIndex + 1))
				fcEndCount += GetSeqWeight(uSeqIndex);
		}

	FCOUNT LL = 0;
	FCOUNT LG = 0;
	FCOUNT GL = 0;
	FCOUNT GG = 0;
	for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
		{
		WEIGHT w = GetSeqWeight(uSeqIndex);
		bool bLetterHere = !IsGap(uSeqIndex, uColIndex);
		bool bLetterPrev = (uColIndex == 0 || !IsGap(uSeqIndex, uColIndex - 1));
		if (bLetterHere)
			{
			if (bLetterPrev)
				LL += w;
			else
				GL += w;
			}
		else
			{
			if (bLetterPrev)
				LG += w;
			else
				GG += w;
			}
		}

	FCOUNT fcExtendCount = 0;
	if (uColIndex > 0 && uColIndex < GetColCount() - 1)
		for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
			if (IsGap(uSeqIndex, uColIndex) && IsGap(uSeqIndex, uColIndex - 1) &&
			  IsGap(uSeqIndex, uColIndex + 1))
				fcExtendCount += GetSeqWeight(uSeqIndex);

	*ptrfcLL = LL;
	*ptrfcLG = LG;
	*ptrfcGL = GL;
	*ptrfcGG = GG;
	*ptrfcGapStart = fcStartCount;
	*ptrfcGapEnd = fcEndCount;
	*ptrfcGapExtend = fcExtendCount;
	}

// Return true if the given column has no gaps and all
// its residues are in the same biochemical group.
bool MSAColIsConservative(const MSA &msa, unsigned uColIndex)
	{
	extern unsigned ResidueGroup[];

	const unsigned uSeqCount = msa.GetColCount();
	if (0 == uSeqCount)
		Quit("MSAColIsConservative: empty alignment");

	if (msa.IsGap(0, uColIndex))
		return false;

	unsigned uLetter = msa.GetLetterEx(0, uColIndex);
	const unsigned uGroup = ResidueGroup[uLetter];

	for (unsigned uSeqIndex = 1; uSeqIndex < uSeqCount; ++uSeqIndex)
		{
		if (msa.IsGap(uSeqIndex, uColIndex))
			return false;
		uLetter = msa.GetLetter(uSeqIndex, uColIndex);
		if (ResidueGroup[uLetter] != uGroup)
			return false;
		}
	return true;
	}

void MSAFromSeqRange(const MSA &msaIn, unsigned uFromSeqIndex, unsigned uSeqCount,
  MSA &msaOut)
	{
	const unsigned uColCount = msaIn.GetColCount();
	msaOut.SetSize(uSeqCount, uColCount);

	for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
		{
		const char *ptrName = msaIn.GetSeqName(uFromSeqIndex + uSeqIndex);
		msaOut.SetSeqName(uSeqIndex, ptrName);

		for (unsigned uColIndex = 0; uColIndex < uColCount; ++uColIndex)
			{
			const char c = msaIn.GetChar(uFromSeqIndex + uSeqIndex, uColIndex);
			msaOut.SetChar(uSeqIndex, uColIndex, c);
			}
		}
	}

void MSAFromColRange(const MSA &msaIn, unsigned uFromColIndex, unsigned uColCount,
  MSA &msaOut)
	{
	const unsigned uSeqCount = msaIn.GetSeqCount();
	const unsigned uInColCount = msaIn.GetColCount();

	if (uFromColIndex + uColCount - 1 > uInColCount)
		Quit("MSAFromColRange, out of bounds");

	msaOut.SetSize(uSeqCount, uColCount);

	for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
		{
		const char *ptrName = msaIn.GetSeqName(uSeqIndex);
		unsigned uId = msaIn.GetSeqId(uSeqIndex);
		msaOut.SetSeqName(uSeqIndex, ptrName);
		msaOut.SetSeqId(uSeqIndex, uId);

		for (unsigned uColIndex = 0; uColIndex < uColCount; ++uColIndex)
			{
			const char c = msaIn.GetChar(uSeqIndex, uFromColIndex + uColIndex);
			msaOut.SetChar(uSeqIndex, uColIndex, c);
			}
		}
	}

void SeqVectFromMSA(const MSA &msa, SeqVect &v)
	{
	v.Clear();
	const unsigned uSeqCount = msa.GetSeqCount();
	for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
		{
		Seq s;
		msa.GetSeq(uSeqIndex, s);

		s.StripGaps();
		//if (0 == s.Length())
		//	continue;

		const char *ptrName = msa.GetSeqName(uSeqIndex);
		s.SetName(ptrName);

		v.AppendSeq(s);
		}
	}

void DeleteGappedCols(MSA &msa)
	{
	unsigned uColIndex = 0;
	for (;;)
		{
		if (uColIndex >= msa.GetColCount())
			break;
		if (msa.IsGapColumn(uColIndex))
			msa.DeleteCol(uColIndex);
		else
			++uColIndex;
		}
	}

void MSAFromSeqSubset(const MSA &msaIn, const unsigned uSeqIndexes[], unsigned uSeqCount,
  MSA &msaOut)
	{
	const unsigned uColCount = msaIn.GetColCount();
	msaOut.SetSize(uSeqCount, uColCount);
	for (unsigned uSeqIndexOut = 0; uSeqIndexOut < uSeqCount; ++uSeqIndexOut)
		{
		unsigned uSeqIndexIn = uSeqIndexes[uSeqIndexOut];
		const char *ptrName = msaIn.GetSeqName(uSeqIndexIn);
		unsigned uId = msaIn.GetSeqId(uSeqIndexIn);
		msaOut.SetSeqName(uSeqIndexOut, ptrName);
		msaOut.SetSeqId(uSeqIndexOut, uId);
		for (unsigned uColIndex = 0; uColIndex < uColCount; ++uColIndex)
			{
			const char c = msaIn.GetChar(uSeqIndexIn, uColIndex);
			msaOut.SetChar(uSeqIndexOut, uColIndex, c);
			}
		}
	}

void AssertMSAEqIgnoreCaseAndGaps(const MSA &msa1, const MSA &msa2)
	{
	const unsigned uSeqCount1 = msa1.GetSeqCount();
	const unsigned uSeqCount2 = msa2.GetSeqCount();
	if (uSeqCount1 != uSeqCount2)
		Quit("Seq count differs");

	for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount1; ++uSeqIndex)
		{
		Seq seq1;
		msa1.GetSeq(uSeqIndex, seq1);

		unsigned uId = msa1.GetSeqId(uSeqIndex);
		unsigned uSeqIndex2 = msa2.GetSeqIndex(uId);

		Seq seq2;
		msa2.GetSeq(uSeqIndex2, seq2);

		if (!seq1.EqIgnoreCaseAndGaps(seq2))
			{
			Log("Input:\n");
			seq1.LogMe();
			Log("Output:\n");
			seq2.LogMe();
			Quit("Seq %s differ ", msa1.GetSeqName(uSeqIndex));
			}
		}
	}

void AssertMSAEq(const MSA &msa1, const MSA &msa2)
	{
	const unsigned uSeqCount1 = msa1.GetSeqCount();
	const unsigned uSeqCount2 = msa2.GetSeqCount();
	if (uSeqCount1 != uSeqCount2)
		Quit("Seq count differs");

	for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount1; ++uSeqIndex)
		{
		Seq seq1;
		msa1.GetSeq(uSeqIndex, seq1);

		unsigned uId = msa1.GetSeqId(uSeqIndex);
		unsigned uSeqIndex2 = msa2.GetSeqIndex(uId);

		Seq seq2;
		msa2.GetSeq(uSeqIndex2, seq2);

		if (!seq1.Eq(seq2))
			{
			Log("Input:\n");
			seq1.LogMe();
			Log("Output:\n");
			seq2.LogMe();
			Quit("Seq %s differ ", msa1.GetSeqName(uSeqIndex));
			}
		}
	}

void SetMSAWeightsMuscle(MSA &msa)
	{
	SEQWEIGHT Method = GetSeqWeightMethod();
	switch (Method)
		{
	case SEQWEIGHT_None:
		msa.SetUniformWeights();
		return;

	case SEQWEIGHT_Henikoff:
		msa.SetHenikoffWeights();
		return;

	case SEQWEIGHT_HenikoffPB:
		msa.SetHenikoffWeightsPB();
		return;

	case SEQWEIGHT_GSC:
		msa.SetGSCWeights();
		return;

	case SEQWEIGHT_ClustalW:
		SetClustalWWeightsMuscle(msa);
		return;
	
	case SEQWEIGHT_ThreeWay:
		SetThreeWayWeightsMuscle(msa);
		return;
		}
	Quit("SetMSAWeightsMuscle, Invalid method=%d", Method);
	}

static WEIGHT *g_MuscleWeights;
static unsigned g_uMuscleIdCount;

WEIGHT GetMuscleSeqWeightById(unsigned uId)
	{
	if (0 == g_MuscleWeights)
		Quit("g_MuscleWeights = 0");
	if (uId >= g_uMuscleIdCount)
		Quit("GetMuscleSeqWeightById(%u): count=%u",
		  uId, g_uMuscleIdCount);

	return g_MuscleWeights[uId];
	}

void SetMuscleTree(const Tree &tree)
	{
	g_ptrMuscleTree = &tree;

	if (SEQWEIGHT_ClustalW != GetSeqWeightMethod())
		return;

	delete[] g_MuscleWeights;

	const unsigned uLeafCount = tree.GetLeafCount();
	g_uMuscleIdCount = uLeafCount;
	g_MuscleWeights = new WEIGHT[uLeafCount];
	CalcClustalWWeights(tree, g_MuscleWeights);
	}

void SetClustalWWeightsMuscle(MSA &msa)
	{
	if (0 == g_MuscleWeights)
		Quit("g_MuscleWeights = 0");
	const unsigned uSeqCount = msa.GetSeqCount();
	for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
		{
		const unsigned uId = msa.GetSeqId(uSeqIndex);
		if (uId >= g_uMuscleIdCount)
			Quit("SetClustalWWeightsMuscle: id out of range");
		msa.SetSeqWeight(uSeqIndex, g_MuscleWeights[uId]);
		}
	msa.NormalizeWeights((WEIGHT) 1.0);
	}

#define	LOCAL_VERBOSE	0

void SetThreeWayWeightsMuscle(MSA &msa)
	{
	if (NULL_NEIGHBOR == g_uTreeSplitNode1 || NULL_NEIGHBOR == g_uTreeSplitNode2)
		{
		msa.SetHenikoffWeightsPB();
		return;
		}

	const unsigned uMuscleSeqCount = g_ptrMuscleTree->GetLeafCount();
	WEIGHT *Weights = new WEIGHT[uMuscleSeqCount];

	CalcThreeWayWeights(*g_ptrMuscleTree, g_uTreeSplitNode1, g_uTreeSplitNode2,
	  Weights);

	const unsigned uMSASeqCount = msa.GetSeqCount();
	for (unsigned uSeqIndex = 0; uSeqIndex < uMSASeqCount; ++uSeqIndex)
		{
		const unsigned uId = msa.GetSeqId(uSeqIndex);
		if (uId >= uMuscleSeqCount)
			Quit("SetThreeWayWeightsMuscle: id out of range");
		msa.SetSeqWeight(uSeqIndex, Weights[uId]);
		}
#if	LOCAL_VERBOSE
	{
	Log("SetThreeWayWeightsMuscle\n");
	for (unsigned n = 0; n < uMSASeqCount; ++n)
		{
		const unsigned uId = msa.GetSeqId(n);
		Log("%20.20s %6.3f\n", msa.GetSeqName(n), Weights[uId]);
		}
	}
#endif
	msa.NormalizeWeights((WEIGHT) 1.0);

	delete[] Weights;
	}

// Append msa2 at the end of msa1
void MSAAppend(MSA &msa1, const MSA &msa2)
	{
	const unsigned uSeqCount = msa1.GetSeqCount();

	const unsigned uColCount1 = msa1.GetColCount();
	const unsigned uColCount2 = msa2.GetColCount();
	const unsigned uColCountCat = uColCount1 + uColCount2;

	for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
		{
		unsigned uId = msa1.GetSeqId(uSeqIndex);
		unsigned uSeqIndex2 = msa2.GetSeqIndex(uId);
		for (unsigned uColIndex = 0; uColIndex < uColCount2; ++uColIndex)
			{
			const char c = msa2.GetChar(uSeqIndex2, uColIndex);
			msa1.SetChar(uSeqIndex, uColCount1 + uColIndex, c);
			}
		}
	}

// "Catenate" two MSAs (by bad analogy with UNIX cat command).
// msa1 and msa2 must have same sequence names, but possibly
// in a different order.
// msaCat is the combined alignment produce by appending
// sequences in msa2 to sequences in msa1.
void MSACat(const MSA &msa1, const MSA &msa2, MSA &msaCat)
	{
	const unsigned uSeqCount = msa1.GetSeqCount();

	const unsigned uColCount1 = msa1.GetColCount();
	const unsigned uColCount2 = msa2.GetColCount();
	const unsigned uColCountCat = uColCount1 + uColCount2;

	msaCat.SetSize(uSeqCount, uColCountCat);

	for (unsigned uSeqIndex = 0; uSeqIndex < uSeqCount; ++uSeqIndex)
		{
		for (unsigned uColIndex = 0; uColIndex < uColCount1; ++uColIndex)
			{
			const char c = msa1.GetChar(uSeqIndex, uColIndex);
			msaCat.SetChar(uSeqIndex, uColIndex, c);
			}

		const char *ptrSeqName = msa1.GetSeqName(uSeqIndex);
		unsigned uSeqIndex2;
		msaCat.SetSeqName(uSeqIndex, ptrSeqName);
		bool bFound = msa2.GetSeqIndex(ptrSeqName, &uSeqIndex2);
		if (bFound)
			{
			for (unsigned uColIndex = 0; uColIndex < uColCount2; ++uColIndex)
				{
				const char c = msa2.GetChar(uSeqIndex2, uColIndex);
				msaCat.SetChar(uSeqIndex, uColCount1 + uColIndex, c);
				}
			}
		else
			{
			for (unsigned uColIndex = 0; uColIndex < uColCount2; ++uColIndex)
				msaCat.SetChar(uSeqIndex, uColCount1 + uColIndex, '-');
			}
		}
	}