1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
|
//=========================================================
// MusE
// Linux Music Editor
// $Id: scldiv.cpp,v 1.1.1.1 2003/10/29 10:06:22 wschweer Exp $
//
// Copyright (C) 1997 Josef Wilgen
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License, version 2,
// as published by the Free Software Foundation.
//
// (C) Copyright 2000 Werner Schweer (ws@seh.de)
//=========================================================
#include <cmath>
#include "scldiv.h"
#include "mmath.h"
// ScaleDiv - A class for building scale divisions
//
// The ScaleDiv class can build
// linear and logarithmic scale divisions for specified
// intervals. It uses an adjustable algorithm to
// generate the major and minor step widths automatically.
// A scale division has a minimum value, a maximum value,
// a vector of major marks, and a vector of minor marks.
//
// ScaleDiv uses implicit sharing for the mark vectors.
//
// Build a logarithmic scale division from 0.01 to 1000
// and print out the major and minor marks.
//.c
// #include <scldiv.h>
// #include <iostream.h>
//
// main()
// {
// int i,k;
// ScaleDiv sd;
//
// sd.rebuild(0.01, 100, 10, 10, TRUE, 0.0);
//
// k=0;
// for (i=0;i<sd.majCnt();i++)
// {
// while(k < sd.minCnt())
// {
// if(sd.minMark(k) < sd.majMark(i))
// {
// cout << " - " << sd.minMark(i) << "\n";
// k++;
// }
// else
// break;
// }
// cout << "-- " << sd.majMark(i) << "\n";
// }
// while(k < sd.minCnt())
// {
// cout << " - " << sd.minMark(i) << "\n";
// k++;
// }
// }
//
//------------------------------------------------------------
static const double step_eps = 1.0e-3;
static const double border_eps = 1.0e-10;
static bool limRange(double &val, double v1, double v2, double eps_rel = 0.0,
double eps_abs = 0.0)
{
bool rv = TRUE;
double vmin = qwtMin(v1, v2);
double vmax = qwtMax(v1, v2);
double delta_min = qwtMax(qwtAbs(eps_rel * vmin), qwtAbs(eps_abs));
double delta_max = qwtMax(qwtAbs(eps_rel * vmax), qwtAbs(eps_abs));
if (val < vmin)
{
if (val < vmin - delta_min) rv = FALSE;
val = vmin;
}
else if (val > vmax)
{
if (val > vmax + delta_max) rv = FALSE;
val = vmax;
}
return rv;
}
//------------------------------------------------------------
//.F ScaleDiv::ScaleDiv
// Construct a ScaleDiv instance.
//
//.u Syntax
//.f ScaleDiv::ScaleDiv()
//------------------------------------------------------------
ScaleDiv::ScaleDiv()
{
d_lBound = 0.0;
d_hBound = 0.0;
d_majStep = 0.0;
d_log = FALSE;
}
//------------------------------------------------------------
//.F ScaleDiv::~ScaleDiv
// Destroy a ScaleDiv instance.
//
//.u Syntax
//.f ScaleDiv::~ScaleDiv()
//------------------------------------------------------------
ScaleDiv::~ScaleDiv()
{
}
//------------------------------------------------------------
//.F ScaleDiv::ScaleDiv
// Copy Constructor
//
//.u Syntax
//.f ScaleDiv::ScaleDiv(const ScaleDiv &s)
//
//.u Parameters
//.p const ScaleDiv &s -- scale division to be copied
//------------------------------------------------------------
ScaleDiv::ScaleDiv(const ScaleDiv &s)
{
copy(s);
}
//------------------------------------------------------------
//.F ScaleDiv::operator=
// Assignment operator
//
//.u Syntax
//.f ScaleDiv & ScaleDiv::operator=(const ScaleDiv &s)
//
//.u Parameters
//.p const ScaleDiv &s -- scale divison to be assigned
//------------------------------------------------------------
ScaleDiv& ScaleDiv::operator=(const ScaleDiv &s)
{
copy(s);
return *this;
}
//------------------------------------------------------------
//.F ScaleDiv::copy
// Copy member data from another ScaleDiv instance.
//
//.u Syntax
//.f void ScaleDiv::copy(const ScaleDiv &s)
//
//.u Parameters
//.p const ScaleDiv &s
//------------------------------------------------------------
void ScaleDiv::copy(const ScaleDiv &s)
{
d_lBound = s.d_lBound;
d_hBound = s.d_hBound;
d_log = s.d_log;
d_majStep = s.d_majStep;
d_minMarks = s.d_minMarks;
d_majMarks = s.d_majMarks;
}
//------------------------------------------------------------
//.F ScaleDiv::rebuild
// Build a scale width major and minor divisions
//
//.p
// double x1 -- first boundary value
// double x2 -- second boundary value
// int maxMajSteps -- max. number of major step intervals
// int maxMinSteps -- max. number of minor step intervals
// bool log -- logarithmic division (TRUE/FALSE)
// double step -- fixed major step width. Defaults to 0.0.
// bool ascend -- if TRUE, sort in ascending order from min(x1, x2)
// to max(x1, x2). If FALSE, sort in the direction
// from x1 to x2. Defaults to TRUE.
//
//.u Return Value
// True if the arrays have been allocated successfully.
//
//.u Description
// If no fixed step width is specified or if it is set to 0, the
// major step width will be calculated automatically according to the
// the value of maxMajSteps. The maxMajSteps parameter has no effect
// if a fixed step size is specified. The minor step width is always
// calculated automatically.
// If the step width is to be calculated automatically, the algorithm
// tries to find reasonable values fitting into the scheme {1,2,5}*10^n
// with an integer number n for linear scales.
// For logarithmic scales, there are three different cases:
//.i
// -- If the major step width is one decade, the minor marks
// will fit into one of the schemes {1,2,...9}, {2,4,6,8}, {2,5} or {5},
// depending on the maxMinSteps parameter.
// -- If the major step size spans
// more than one decade, the minor step size will be {1,2,5}*10^n decades
// with a natural number n.
// -- If the whole range is less than one decade, a linear scale
// division will be built
//
//.u Note
// For logarithmic scales, the step width is measured in decades.
//------------------------------------------------------------
bool ScaleDiv::rebuild(double x1, double x2, int maxMajSteps, int maxMinSteps,
bool log, double step, bool ascend)
{
int rv;
d_lBound = qwtMin(x1, x2);
d_hBound = qwtMax(x1, x2);
d_log = log;
if (d_log)
rv = buildLogDiv(maxMajSteps,maxMinSteps,step);
else
rv = buildLinDiv(maxMajSteps, maxMinSteps, step);
if ((!ascend) && (x2 < x1))
{
d_lBound = x1;
d_hBound = x2;
qwtTwistArray(d_majMarks.data(), d_majMarks.size());
qwtTwistArray(d_minMarks.data(), d_minMarks.size());
}
return rv;
}
//------------------------------------------------------------
//.F ScaleDiv::buildLinDiv
// Build a linear scale division in ascending order
//
//.u Syntax
//.f bool ScaleDiv::buildLinDiv(int majSteps, int minSteps, double step)
//
//.u Parameters
//.p int maxSteps -- max. number of step intervals
// double step -- fixed step width
//
//.u Return Value
// TRUE if array has been successfully resized
//
//.u Description
// If the 'step' parameter is set to 0.0, this function
// cal[culates the step width automatically according to
// the value of 'maxSteps'. MaxSteps must be greater than or
// equal to 2. It will be guessed if an invalid value is specified.
// The maximum possible number of steps is limited to 10000.
// The maxSteps parameter has no effect if a fixed step width is
// specified.
//
//.u Note
// This function uses the data members d_lBound and d_hBound and assumes
// that d_hBound > d_lBound.
//------------------------------------------------------------
bool ScaleDiv::buildLinDiv(int maxMajSteps, int maxMinSteps, double step)
{
int nMaj, nMin, minSize, i0,i,k;
double val, mval;
double firstTick, lastTick;
double minStep;
QMemArray<double> buffer;
bool rv = TRUE;
// parameter range check
maxMajSteps = qwtMax(1, maxMajSteps);
maxMinSteps = qwtMax(0, maxMinSteps);
step = qwtAbs(step);
// detach arrays
d_majMarks.duplicate(0,0);
d_minMarks.duplicate(0,0);
if (d_lBound == d_hBound) return TRUE;
//
// Set up major divisions
//
if (step == 0.0)
d_majStep = qwtCeil125(qwtAbs(d_hBound - d_lBound) * 0.999999
/ double(maxMajSteps));
else
d_majStep = step;
if (d_majStep == 0.0) return TRUE;
firstTick = ceil( (d_lBound - step_eps * d_majStep) / d_majStep) * d_majStep;
lastTick = floor( (d_hBound + step_eps * d_majStep) / d_majStep) * d_majStep;
nMaj = qwtMin(10000, int(rint((lastTick - firstTick) / d_majStep)) + 1);
if ((rv = d_majMarks.resize(nMaj)))
qwtLinSpace(d_majMarks.data(), d_majMarks.size(), firstTick, lastTick);
else
return FALSE;
//
// Set up minor divisions
//
if (maxMinSteps < 1) // no minor divs
return TRUE;
minStep = qwtCeil125( d_majStep / double(maxMinSteps) );
if (minStep == 0.0) return TRUE;
nMin = qwtAbs(int(rint(d_majStep / minStep))) - 1; // # minor steps per interval
// Do the minor steps fit into the interval?
if ( qwtAbs(double(nMin + 1) * minStep - d_majStep) > step_eps * d_majStep)
{
nMin = 1;
minStep = d_majStep * 0.5;
}
// Are there minor ticks below the first major tick?
if (d_majMarks[0] > d_lBound )
i0 = -1;
else
i0 = 0;
// resize buffer to the maximum possible number of minor ticks
rv = buffer.resize(nMin * (nMaj + 1));
// calculate minor ticks
if (rv)
{
minSize = 0;
for (i = i0; i < (int)d_majMarks.size(); i++)
{
if (i >= 0)
val = d_majMarks[i];
else
val = d_majMarks[0] - d_majStep;
for (k=0; k< nMin; k++)
{
mval = (val += minStep);
if (limRange(mval, d_lBound, d_hBound, border_eps))
{
buffer[minSize] = mval;
minSize++;
}
}
}
d_minMarks.duplicate(buffer.data(), minSize);
}
return rv;
}
//------------------------------------------------------------
//.F ScaleDiv::buildLogDiv
// Build a logarithmic scale division
//
//.u Syntax
//.f bool ScaleDiv::buildLogDiv(int maxMajSteps, int maxMinSteps, int majStep)
//
//.u Parameters
//.p int maxMajSteps, int maxMinSteps, int majStep
//
//.u Return Value
// True if memory has been successfully allocated
//
//.u Note
// This function uses the data members d_lBound and d_hBound and assumes
// that d_hBound > d_lBound.
//------------------------------------------------------------
bool ScaleDiv::buildLogDiv(int maxMajSteps, int maxMinSteps, double majStep)
{
double firstTick, lastTick;
double lFirst, lLast;
double val, sval, minStep, minFactor;
int nMaj, nMin, minSize, i, k, k0, kstep, kmax, i0;
int rv = TRUE;
double width;
QMemArray<double> buffer;
// Parameter range check
maxMajSteps = qwtMax(1, qwtAbs(maxMajSteps));
maxMinSteps = qwtMax(0, qwtAbs(maxMinSteps));
majStep = qwtAbs(majStep);
// boundary check
limRange(d_hBound, LOG_MIN, LOG_MAX);
limRange(d_lBound, LOG_MIN, LOG_MAX);
// detach arrays
d_majMarks.duplicate(0,0);
d_minMarks.duplicate(0,0);
if (d_lBound == d_hBound) return TRUE;
// scale width in decades
width = log10(d_hBound) - log10(d_lBound);
// scale width is less than one decade -> build linear scale
if (width < 1.0)
{
rv = buildLinDiv(maxMajSteps, maxMinSteps, 0.0);
// convert step width to decades
if (d_majStep > 0)
d_majStep = log10(d_majStep);
return rv;
}
//
// Set up major scale divisions
//
if (majStep == 0.0)
d_majStep = qwtCeil125( width * 0.999999 / double(maxMajSteps));
else
d_majStep = majStep;
// major step must be >= 1 decade
d_majStep = qwtMax(d_majStep, 1.0);
lFirst = ceil((log10(d_lBound) - step_eps * d_majStep) / d_majStep) * d_majStep;
lLast = floor((log10(d_hBound) + step_eps * d_majStep) / d_majStep) * d_majStep;
firstTick = pow(10.0, lFirst);
lastTick = pow(10.0, lLast);
nMaj = qwtMin(10000, int(rint(qwtAbs(lLast - lFirst) / d_majStep)) + 1);
if (d_majMarks.resize(nMaj))
qwtLogSpace(d_majMarks.data(), d_majMarks.size(), firstTick, lastTick);
else
return FALSE;
//
// Set up minor scale divisions
//
if ((d_majMarks.size() < 1) || (maxMinSteps < 1)) return TRUE; // no minor marks
if (d_majStep < 1.1) // major step width is one decade
{
if (maxMinSteps >= 8)
{
k0 = 2;
kmax = 9;
kstep = 1;
minSize = (d_majMarks.size() + 1) * 8;
}
else if (maxMinSteps >= 4)
{
k0 = 2;
kmax = 8;
kstep = 2;
minSize = (d_majMarks.size() + 1) * 4;
}
else if (maxMinSteps >= 2)
{
k0 = 2;
kmax = 5;
kstep = 3;
minSize = (d_majMarks.size() + 1) * 2;
}
else
{
k0 = 5;
kmax = 5;
kstep = 1;
minSize = (d_majMarks.size() + 1);
}
// resize buffer to the max. possible number of minor marks
buffer.resize(minSize);
// Are there minor ticks below the first major tick?
if ( d_lBound < firstTick )
i0 = -1;
else
i0 = 0;
minSize = 0;
for (i = i0; i< (int)d_majMarks.size(); i++)
{
if (i >= 0)
val = d_majMarks[i];
else
val = d_majMarks[0] / pow(10.0, d_majStep);
for (k=k0; k<= kmax; k+=kstep)
{
sval = val * double(k);
if (limRange(sval, d_lBound, d_hBound, border_eps))
{
buffer[minSize] = sval;
minSize++;
}
}
}
// copy values into the minMarks array
d_minMarks.duplicate(buffer.data(), minSize);
}
else // major step > one decade
{
// substep width in decades, at least one decade
minStep = qwtCeil125( (d_majStep - step_eps * (d_majStep / double(maxMinSteps)))
/ double(maxMinSteps) );
minStep = qwtMax(1.0, minStep);
// # subticks per interval
nMin = int(rint(d_majStep / minStep)) - 1;
// Do the minor steps fit into the interval?
if ( qwtAbs( double(nMin + 1) * minStep - d_majStep) > step_eps * d_majStep)
nMin = 0;
if (nMin < 1) return TRUE; // no subticks
// resize buffer to max. possible number of subticks
buffer.resize((d_majMarks.size() + 1) * nMin );
// substep factor = 10^substeps
minFactor = qwtMax(pow(10,minStep), 10.0);
// Are there minor ticks below the first major tick?
if ( d_lBound < firstTick )
i0 = -1;
else
i0 = 0;
minSize = 0;
for (i = i0; i< (int)d_majMarks.size(); i++)
{
if (i >= 0)
val = d_majMarks[i];
else
val = firstTick / pow(10.0, d_majStep);
for (k=0; k< nMin; k++)
{
sval = (val *= minFactor);
if (limRange(sval, d_lBound, d_hBound, border_eps))
{
buffer[minSize] = sval;
minSize++;
}
}
}
d_minMarks.duplicate(buffer.data(), minSize);
}
return rv;
}
//------------------------------------------------------------
//.F ScaleDiv::operator==
// Equality operator
//
//.u Syntax
//.f int ScaleDiv::operator==(const ScaleDiv &s)
//
//.u Parameters
//.p const ScaleDiv &s
//
//.u Return Value
// TRUE if this instance is equal to s
//------------------------------------------------------------
int ScaleDiv::operator==(const ScaleDiv &s) const
{
if (d_lBound != s.d_lBound)
return 0;
if (d_hBound != s.d_hBound)
return 0;
if (d_log != s.d_log)
return 0;
if (d_majStep != s.d_majStep)
return 0;
if (d_majMarks != s.d_majMarks)
return 0;
return (d_minMarks == s.d_minMarks);
}
//------------------------------------------------------------
//.F ScaleDiv::operator!=
// Inequality
//
//.u Syntax
//.f int ScaleDiv::operator!=(const ScaleDiv &s)
//
//.u Parameters
//.p const ScaleDiv &s
//
//.u Return Value
// TRUE if this instance is not equal to s
//------------------------------------------------------------
int ScaleDiv::operator!=(const ScaleDiv &s) const
{
return (!(*this == s));
}
//------------------------------------------------------------
//.F ScaleDiv::reset
// Detach the shared data and set everything to zero.
//
//.u Syntax
//.f void ScaleDiv::reset()
//------------------------------------------------------------
void ScaleDiv::reset()
{
// detach arrays
d_majMarks.duplicate(0,0);
d_minMarks.duplicate(0,0);
d_lBound = 0.0;
d_hBound = 0.0;
d_majStep = 0.0;
d_log = FALSE;
}
|