1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
//=============================================================================
// MuseScore
// Music Composition & Notation
//
// Copyright (C) 2019 Werner Schweer
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License version 2
// as published by the Free Software Foundation and appearing in
// the file LICENCE.GPL
//=============================================================================
// everything contained in .h file for performance reasons
#ifndef __FRACTION_H__
#define __FRACTION_H__
#include "config.h"
#include "mscore.h"
namespace Ms {
//---------------------------------------------------------
// gcd
// greatest common divisor. always returns a positive val
// however, since int / uint = uint by C++ rules,
// return int to avoid accidental implicit unsigned cast
//---------------------------------------------------------
static int_least64_t gcd(int_least64_t a, int_least64_t b)
{
int bp;
if (b > a) { bp = b; b = a; a = bp; } // Saves one % if true
while (b != 0) {
bp = b; b = a % b; a = bp;
}
return (a >= 0 ? a : -a);
}
//---------------------------------------------------------
// Fraction
//---------------------------------------------------------
class Fraction {
// ensure 64 bit to avoid overflows in comparisons
int_least64_t _numerator { 0 };
int_least64_t _denominator { 1 };
public:
#if 0
// implicit conversion from int to Fraction: this is convenient but may hide some potential bugs
constexpr Fraction(int z=0, int n=1) : _numerator(z), _denominator(n) {}
#else
// no implicit conversion from int to Fraction:
constexpr Fraction() {}
constexpr Fraction(int z, int n) : _numerator { n < 0 ? -z : z }, _denominator { n < 0 ? -n : n } { }
#endif
int numerator() const { return _numerator; }
int denominator() const { return _denominator; }
int_least64_t& rnumerator() { return _numerator; }
int_least64_t& rdenominator() { return _denominator; }
void setNumerator(int v) { _numerator = v; }
void setDenominator(int v) {
if (v < 0) { _numerator = -_numerator; _denominator = -v; }
else _denominator = v;
}
void set(int z, int n) {
if (n < 0) { _numerator = -z; _denominator = -n; }
else { _numerator = z; _denominator = n; }
}
bool isZero() const { return _numerator == 0; }
bool isNotZero() const { return _numerator != 0; }
bool isValid() const { return _denominator != 0; }
// check if two fractions are identical (numerator & denominator)
// == operator checks for equal value:
bool identical(const Fraction& v) const {
return (_numerator == v._numerator) &&
(_denominator == v._denominator);
}
Fraction absValue() const {
return Fraction(qAbs(_numerator), _denominator); }
// --- reduction --- //
void reduce()
{
const int g = gcd(_numerator, _denominator);
_numerator /= g; _denominator /= g;
}
Fraction reduced() const
{
const int g = gcd(_numerator, _denominator);
return Fraction(_numerator / g, _denominator / g);
}
// --- comparison --- //
bool operator<(const Fraction& val) const
{
return _numerator * val._denominator < val._numerator * _denominator;
}
bool operator<=(const Fraction& val) const
{
return _numerator * val._denominator <= val._numerator * _denominator;
}
bool operator>=(const Fraction& val) const
{
return _numerator * val._denominator >= val._numerator * _denominator;
}
bool operator>(const Fraction& val) const
{
return _numerator * val._denominator > val._numerator * _denominator;
}
bool operator==(const Fraction& val) const
{
return _numerator * val._denominator == val._numerator * _denominator;
}
bool operator!=(const Fraction& val) const
{
return _numerator * val._denominator != val._numerator * _denominator;
}
// --- arithmetic --- //
Fraction& operator+=(const Fraction& val)
{
if (_denominator == val._denominator)
_numerator += val._numerator; // Common enough use case to be handled separately for efficiency
else {
const int g = gcd(_denominator, val._denominator);
const int m1 = val._denominator / g; // This saves one division over straight lcm
_numerator = _numerator * m1 + val._numerator * (_denominator / g);
_denominator = m1 * _denominator;
}
return *this;
}
Fraction& operator-=(const Fraction& val)
{
if (_denominator == val._denominator)
_numerator -= val._numerator; // Common enough use case to be handled separately for efficiency
else {
const int g = gcd(_denominator, val._denominator);
const int m1 = val._denominator / g; // This saves one division over straight lcm
_numerator = _numerator * m1 - val._numerator * (_denominator / g);
_denominator = m1 * _denominator;
}
return *this;
}
Fraction& operator*=(const Fraction& val)
{
_numerator *= val._numerator;
_denominator *= val._denominator;
if (val._denominator != 1) reduce(); // We should be free to fully reduce here
return *this;
}
Fraction& operator*=(int val)
{
_numerator *= val;
return *this;
}
Fraction& operator/=(const Fraction& val)
{
const int sign = (val._numerator >= 0 ? 1 : -1);
_numerator *= (sign*val._denominator);
_denominator *= (sign*val._numerator);
if (val._numerator != sign) reduce();
return *this;
}
#if 0
Fraction& operator/=(int val)
{
_denominator *= val;
return *this;
}
#endif
Fraction operator+(const Fraction& v) const { return Fraction(*this) += v; }
Fraction operator-(const Fraction& v) const { return Fraction(*this) -= v; }
Fraction operator-() const { return Fraction(-_numerator, _denominator); }
Fraction operator*(const Fraction& v) const { return Fraction(*this) *= v; }
Fraction operator/(const Fraction& v) const { return Fraction(*this) /= v; }
// Fraction operator/(int v) const { return Fraction(*this) /= v; }
//---------------------------------------------------------
// fromTicks
//---------------------------------------------------------
static Fraction fromTicks(int ticks)
{
if (ticks == -1)
return Fraction(-1,1); // HACK
return Fraction(ticks, MScore::division * 4).reduced();
}
//---------------------------------------------------------
// eps
/// A very small fraction, corresponds to 1 MIDI tick
//---------------------------------------------------------
static Fraction eps() { return Fraction(1, MScore::division * 4); }
//---------------------------------------------------------
// ticks
//---------------------------------------------------------
int ticks() const
{
if (_numerator == -1 && _denominator == 1) // HACK
return -1;
// MScore::division - ticks per quarter note
// MScore::division * 4 - ticks per whole note
// result: rounded (MScore::division * 4 * _numerator * 1.0 / _denominator) value
const int sgn = (_numerator < 0) ? -1 : 1;
const auto result = sgn * (static_cast<int_least64_t>(sgn * _numerator) * MScore::division * 4 + (_denominator/2)) / _denominator;
return static_cast<int>(result);
}
QString print() const { return QString("%1/%2").arg(_numerator).arg(_denominator); }
QString toString() const { return print(); }
static Fraction fromString(const QString& str) {
const int i = str.indexOf('/');
return (i == -1) ? Fraction(str.toInt(), 1) : Fraction(str.leftRef(i).toInt(), str.midRef(i+1).toInt());
}
operator QVariant() const { return QVariant::fromValue(*this); }
};
inline Fraction operator*(const Fraction& f, int v) { return Fraction(f) *= v; }
inline Fraction operator*(int v, const Fraction& f) { return Fraction(f) *= v; }
} // namespace Ms
Q_DECLARE_METATYPE(Ms::Fraction);
#endif
|