File: chorus.cpp

package info (click to toggle)
musescore 1.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 143,984 kB
  • sloc: cpp: 372,648; xml: 148,276; ansic: 6,156; python: 2,197; perl: 710; sh: 534; makefile: 230
file content (368 lines) | stat: -rw-r--r-- 13,401 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/*
 * August 24, 1998
 * Copyright (C) 1998 Juergen Mueller And Sundry Contributors
 * This source code is freely redistributable and may be used for
 * any purpose.  This copyright notice must be maintained.
 * Juergen Mueller And Sundry Contributors are not responsible for
 * the consequences of using this software.
 */


/*

  CHANGES

  - Adapted for fluidsynth, Peter Hanappe, March 2002

  - Variable delay line implementation using bandlimited
    interpolation, code reorganization: Markus Nentwig May 2002

 */


/*
 * 	Chorus effect.
 *
 * Flow diagram scheme for n delays ( 1 <= n <= MAX_CHORUS ):
 *
 *        * gain-in                                           ___
 * ibuff -----+--------------------------------------------->|   |
 *            |      _________                               |   |
 *            |     |         |                   * level 1  |   |
 *            +---->| delay 1 |----------------------------->|   |
 *            |     |_________|                              |   |
 *            |        /|\                                   |   |
 *            :         |                                    |   |
 *            : +-----------------+   +--------------+       | + |
 *            : | Delay control 1 |<--| mod. speed 1 |       |   |
 *            : +-----------------+   +--------------+       |   |
 *            |      _________                               |   |
 *            |     |         |                   * level n  |   |
 *            +---->| delay n |----------------------------->|   |
 *                  |_________|                              |   |
 *                     /|\                                   |___|
 *                      |                                      |
 *              +-----------------+   +--------------+         | * gain-out
 *              | Delay control n |<--| mod. speed n |         |
 *              +-----------------+   +--------------+         +----->obuff
 *
 *
 * The delay i is controlled by a sine or triangle modulation i ( 1 <= i <= n).
 *
 * The delay of each block is modulated between 0..depth ms
 *
 */


/* Variable delay line implementation
 * ==================================
 *
 * The modulated delay needs the value of the delayed signal between
 * samples.  A lowpass filter is used to obtain intermediate values
 * between samples (bandlimited interpolation).  The sample pulse
 * train is convoluted with the impulse response of the low pass
 * filter (sinc function).  To make it work with a small number of
 * samples, the sinc function is windowed (Hamming window).
 *
 */

#include "chorus.h"
#include "fluid.h"

namespace FluidS {

#define MAX_DELAY	      100
#define MAX_DEPTH	      10
#define MIN_SPEED_HZ	0.29
#define MAX_SPEED_HZ    5

/* Length of one delay line in samples:
 * Set through MAX_SAMPLES_LN2.
 * For example:
 * MAX_SAMPLES_LN2=12
 * => MAX_SAMPLES=pow(2,12)=4096
 * => MAX_SAMPLES_ANDMASK=4095
 */
#define MAX_SAMPLES_LN2 12

#define MAX_SAMPLES (1 << (MAX_SAMPLES_LN2-1))
#define MAX_SAMPLES_ANDMASK (MAX_SAMPLES-1)

#define fluid_log(a, ...)

//---------------------------------------------------------
//   Chorus
//---------------------------------------------------------

Chorus::Chorus(float sr)
      {
      Chorus* chorus = this;

      memset(this, 0, sizeof(Chorus));
      sample_rate = sr;

      /* Lookup table for the SI function (impulse response of an ideal low pass) */

      /* i: Offset in terms of whole samples */
      for (int i = 0; i < INTERPOLATION_SAMPLES; i++){

            /* ii: Offset in terms of fractional samples ('subsamples') */
            for (int ii = 0; ii < INTERPOLATION_SUBSAMPLES; ii++){
                  /* Move the origin into the center of the table */
                  double i_shifted = ((double) i- ((double) INTERPOLATION_SAMPLES) / 2.
			  + (double) ii / (double) INTERPOLATION_SUBSAMPLES);
                  if (fabs(i_shifted) < 0.000001) {
                        /* sinc(0) cannot be calculated straightforward (limit needed
                           for 0/0) */
                        sinc_table[i][ii] = (float)1.;
                        }
                  else {
                        sinc_table[i][ii] = (float)sin(i_shifted * M_PI) / (M_PI * i_shifted);
                        /* Hamming window */
                        sinc_table[i][ii] *= (float)0.5 * (1.0 + cos(2.0 * M_PI * i_shifted / (float)INTERPOLATION_SAMPLES));
                        }
                  }
            }

      lookup_tab = new int[(int) (chorus->sample_rate / MIN_SPEED_HZ)];
      chorusbuf  = new float[MAX_SAMPLES];
      reset();
      }

//---------------------------------------------------------
//   reset
//---------------------------------------------------------

void Chorus::reset()
      {
      memset(chorusbuf, 0, MAX_SAMPLES * sizeof(*chorusbuf));

      set_nr(FLUID_CHORUS_DEFAULT_N);
      set_level(FLUID_CHORUS_DEFAULT_LEVEL);
      set_speed_Hz(FLUID_CHORUS_DEFAULT_SPEED);
      set_depth_ms(FLUID_CHORUS_DEFAULT_DEPTH);
      set_type(FLUID_CHORUS_MOD_SINE);

      update();
      }

//---------------------------------------------------------
//   ~Chorus
//---------------------------------------------------------

Chorus::~Chorus()
      {
      delete[] chorusbuf;
      delete[] lookup_tab;
      }

//---------------------------------------------------------
//   update
//    Calculates the internal chorus parameters using the settings from
//    fluid_chorus_set_xxx.
//---------------------------------------------------------

void Chorus::update()
      {
      if (new_number_blocks < 0) {
            fluid_log(FLUID_WARN, "chorus: number blocks must be >=0! Setting value to 0.");
            new_number_blocks = 0;
            }
      else if (new_number_blocks > MAX_CHORUS) {
            fluid_log(FLUID_WARN, "chorus: number blocks larger than max. allowed! Setting value to %d.",
               MAX_CHORUS);
            new_number_blocks = MAX_CHORUS;
            }

      if (new_speed_Hz < MIN_SPEED_HZ) {
            fluid_log(FLUID_WARN, "chorus: speed is too low (min %f)! Setting value to min.",
               (double) MIN_SPEED_HZ);
            new_speed_Hz = MIN_SPEED_HZ;
            }
      else if (new_speed_Hz > MAX_SPEED_HZ) {
            fluid_log(FLUID_WARN, "chorus: speed must be below %f Hz! Setting value to max.",
               (double) MAX_SPEED_HZ);
            new_speed_Hz = MAX_SPEED_HZ;
            }
      if (new_depth_ms < 0.0) {
            fluid_log(FLUID_WARN, "chorus: depth must be positive! Setting value to 0.");
            new_depth_ms = 0.0;
            }
      /* Depth: Check for too high value through modulation_depth_samples. */

      if (new_level < 0.0) {
            fluid_log(FLUID_WARN, "chorus: level must be positive! Setting value to 0.");
            new_level = 0.0;
            }
      else if (new_level > 10) {
            fluid_log(FLUID_WARN, "chorus: level must be < 10. A reasonable level is << 1! "
               "Setting it to 0.1.");
            new_level = 0.1;
            }

      /* The modulating LFO goes through a full period every x samples: */
      modulation_period_samples = lrint(sample_rate / new_speed_Hz);

      /* The variation in delay time is x: */
      int modulation_depth_samples = (int)
         (new_depth_ms / 1000.0  /* convert modulation depth in ms to s*/
         * sample_rate);

      if (modulation_depth_samples > MAX_SAMPLES) {
            fluid_log(FLUID_WARN, "chorus: Too high depth. Setting it to max (%d).", MAX_SAMPLES);
            modulation_depth_samples = MAX_SAMPLES;
            }

      /* initialize LFO table */
      if (type == FLUID_CHORUS_MOD_SINE)
            sine(lookup_tab, modulation_period_samples, modulation_depth_samples);
      else if (type == FLUID_CHORUS_MOD_TRIANGLE)
            triangle(lookup_tab, modulation_period_samples, modulation_depth_samples);
      else {
            fluid_log(FLUID_WARN, "chorus: Unknown modulation type. Using sinewave.");
            type = FLUID_CHORUS_MOD_SINE;
            sine(lookup_tab, modulation_period_samples, modulation_depth_samples);
            }

      for (int i = 0; i < number_blocks; i++) {
            /* Set the phase of the chorus blocks equally spaced */
            phase[i] = (int) ((double) modulation_period_samples
               * (double) i / (double) number_blocks);
            }

      /* Start of the circular buffer */
      counter       = 0;
      type          = new_type;
      depth_ms      = new_depth_ms;
      level         = new_level;
      speed_Hz      = new_speed_Hz;
      number_blocks = new_number_blocks;
      }

//---------------------------------------------------------
//   process
//---------------------------------------------------------

void Chorus::process(int n, float *in, float *left_out, float *right_out)
      {
      for (int sample_index = 0; sample_index < n; sample_index++) {
            float d_in = in[sample_index];
            float d_out = 0.0f;

            /* Write the current sample into the circular buffer */
            chorusbuf[counter] = d_in;

            for (int i = 0; i < number_blocks; i++) {
                  /* Calculate the delay in subsamples for the delay line of chorus block nr. */

                  /* The value in the lookup table is so, that this expression
                   * will always be positive.  It will always include a number of
                   * full periods of MAX_SAMPLES*INTERPOLATION_SUBSAMPLES to
                   * remain positive at all times.
                   */
                  int pos_subsamples = (INTERPOLATION_SUBSAMPLES * counter
                     - lookup_tab[phase[i]]);

                  int pos_samples = pos_subsamples/INTERPOLATION_SUBSAMPLES;

                  /* modulo divide by INTERPOLATION_SUBSAMPLES */
                  pos_subsamples &= INTERPOLATION_SUBSAMPLES_ANDMASK;

                  for (int ii = 0; ii < INTERPOLATION_SAMPLES; ii++) {
	                  /* Add the delayed signal to the chorus sum d_out Note: The
	                   * delay in the delay line moves backwards for increasing
	                   * delay!*/

	                  /* The & in chorusbuf[...] is equivalent to a division modulo
	                     MAX_SAMPLES, only faster.
                         */
                        d_out += (chorusbuf[pos_samples & MAX_SAMPLES_ANDMASK]
                           * sinc_table[ii][pos_subsamples]);
                        pos_samples--;
                        }
                  /* Cycle the phase of the modulating LFO */
                  phase[i]++;
                  phase[i] %= (modulation_period_samples);
                  } /* foreach chorus block */

            d_out *= level;

            /* Add the chorus sum d_out to output */
            left_out[sample_index]  += d_out;
            right_out[sample_index] += d_out;

            /* Move forward in circular buffer */
            counter++;
            counter %= MAX_SAMPLES;
            }
      }

/* Purpose:
 *
 * Calculates a modulation waveform (sine) Its value ( modulo
 * MAXSAMPLES) varies between 0 and depth*INTERPOLATION_SUBSAMPLES.
 * Its period length is len.  The waveform data will be used modulo
 * MAXSAMPLES only.  Since MAXSAMPLES is substracted from the waveform
 * a couple of times here, the resulting (current position in
 * buffer)-(waveform sample) will always be positive.
 */
void Chorus::sine(int *buf, int len, int depth)
      {
      for (int i = 0; i < len; i++) {
            double val = sin((double) i / (double)len * 2.0 * M_PI);
            buf[i] = (int) ((1.0 + val) * (double) depth / 2.0 * (double) INTERPOLATION_SUBSAMPLES);
            buf[i] -= 3* MAX_SAMPLES * INTERPOLATION_SUBSAMPLES;
            }
      }

/* Purpose:
 * Calculates a modulation waveform (triangle)
 * See fluid_chorus_sine for comments.
 */
void Chorus::triangle(int *buf, int len, int depth)
      {
      int i=0;
      int ii=len-1;
      double val;
      double val2;

      while (i <= ii){
            val = i * 2.0 / len * (double)depth * (double) INTERPOLATION_SUBSAMPLES;
            val2= (int) (val + 0.5) - 3 * MAX_SAMPLES * INTERPOLATION_SUBSAMPLES;
            buf[i++] = (int) val2;
            buf[ii--] = (int) val2;
            }
      }

//---------------------------------------------------------
//   setParameter
//---------------------------------------------------------

void Chorus::setParameter(int idx, double value)
      {
      switch (idx) {
            case 0: type = lrint(value); break;
            case 1: speed_Hz = value * MAX_SPEED_HZ + MIN_SPEED_HZ; break;
            case 2: depth_ms = value * MAX_DEPTH; break;
            case 3: number_blocks = lrint(value * 100.0); break;
            case 4: new_level = value; break;
            }
      }

//---------------------------------------------------------
//   parameter
//---------------------------------------------------------

double Chorus::parameter(int idx) const
      {
      switch (idx) {
            case 0:     return type;
            case 1:     return (speed_Hz-MIN_SPEED_HZ) / MAX_SPEED_HZ;
            case 2:     return depth_ms / MAX_DEPTH;
            case 3:     return number_blocks / 100.0;
            case 4:     return level;
            }
      return 0.0;
      }

}