1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
/*
* August 24, 1998
* Copyright (C) 1998 Juergen Mueller And Sundry Contributors
* This source code is freely redistributable and may be used for
* any purpose. This copyright notice must be maintained.
* Juergen Mueller And Sundry Contributors are not responsible for
* the consequences of using this software.
*/
/*
CHANGES
- Adapted for fluidsynth, Peter Hanappe, March 2002
- Variable delay line implementation using bandlimited
interpolation, code reorganization: Markus Nentwig May 2002
*/
/*
* Chorus effect.
*
* Flow diagram scheme for n delays ( 1 <= n <= MAX_CHORUS ):
*
* * gain-in ___
* ibuff -----+--------------------------------------------->| |
* | _________ | |
* | | | * level 1 | |
* +---->| delay 1 |----------------------------->| |
* | |_________| | |
* | /|\ | |
* : | | |
* : +-----------------+ +--------------+ | + |
* : | Delay control 1 |<--| mod. speed 1 | | |
* : +-----------------+ +--------------+ | |
* | _________ | |
* | | | * level n | |
* +---->| delay n |----------------------------->| |
* |_________| | |
* /|\ |___|
* | |
* +-----------------+ +--------------+ | * gain-out
* | Delay control n |<--| mod. speed n | |
* +-----------------+ +--------------+ +----->obuff
*
*
* The delay i is controlled by a sine or triangle modulation i ( 1 <= i <= n).
*
* The delay of each block is modulated between 0..depth ms
*
*/
/* Variable delay line implementation
* ==================================
*
* The modulated delay needs the value of the delayed signal between
* samples. A lowpass filter is used to obtain intermediate values
* between samples (bandlimited interpolation). The sample pulse
* train is convoluted with the impulse response of the low pass
* filter (sinc function). To make it work with a small number of
* samples, the sinc function is windowed (Hamming window).
*
*/
#include "chorus.h"
#include "fluid.h"
namespace FluidS {
#define MAX_DELAY 100
#define MAX_DEPTH 10
#define MIN_SPEED_HZ 0.29
#define MAX_SPEED_HZ 5
/* Length of one delay line in samples:
* Set through MAX_SAMPLES_LN2.
* For example:
* MAX_SAMPLES_LN2=12
* => MAX_SAMPLES=pow(2,12)=4096
* => MAX_SAMPLES_ANDMASK=4095
*/
#define MAX_SAMPLES_LN2 12
#define MAX_SAMPLES (1 << (MAX_SAMPLES_LN2-1))
#define MAX_SAMPLES_ANDMASK (MAX_SAMPLES-1)
#define fluid_log(a, ...)
//---------------------------------------------------------
// Chorus
//---------------------------------------------------------
Chorus::Chorus(float sr)
{
Chorus* chorus = this;
memset(this, 0, sizeof(Chorus));
sample_rate = sr;
/* Lookup table for the SI function (impulse response of an ideal low pass) */
/* i: Offset in terms of whole samples */
for (int i = 0; i < INTERPOLATION_SAMPLES; i++){
/* ii: Offset in terms of fractional samples ('subsamples') */
for (int ii = 0; ii < INTERPOLATION_SUBSAMPLES; ii++){
/* Move the origin into the center of the table */
double i_shifted = ((double) i- ((double) INTERPOLATION_SAMPLES) / 2.
+ (double) ii / (double) INTERPOLATION_SUBSAMPLES);
if (fabs(i_shifted) < 0.000001) {
/* sinc(0) cannot be calculated straightforward (limit needed
for 0/0) */
sinc_table[i][ii] = (float)1.;
}
else {
sinc_table[i][ii] = (float)sin(i_shifted * M_PI) / (M_PI * i_shifted);
/* Hamming window */
sinc_table[i][ii] *= (float)0.5 * (1.0 + cos(2.0 * M_PI * i_shifted / (float)INTERPOLATION_SAMPLES));
}
}
}
lookup_tab = new int[(int) (chorus->sample_rate / MIN_SPEED_HZ)];
chorusbuf = new float[MAX_SAMPLES];
reset();
}
//---------------------------------------------------------
// reset
//---------------------------------------------------------
void Chorus::reset()
{
memset(chorusbuf, 0, MAX_SAMPLES * sizeof(*chorusbuf));
set_nr(FLUID_CHORUS_DEFAULT_N);
set_level(FLUID_CHORUS_DEFAULT_LEVEL);
set_speed_Hz(FLUID_CHORUS_DEFAULT_SPEED);
set_depth_ms(FLUID_CHORUS_DEFAULT_DEPTH);
set_type(FLUID_CHORUS_MOD_SINE);
update();
}
//---------------------------------------------------------
// ~Chorus
//---------------------------------------------------------
Chorus::~Chorus()
{
delete[] chorusbuf;
delete[] lookup_tab;
}
//---------------------------------------------------------
// update
// Calculates the internal chorus parameters using the settings from
// fluid_chorus_set_xxx.
//---------------------------------------------------------
void Chorus::update()
{
if (new_number_blocks < 0) {
fluid_log(FLUID_WARN, "chorus: number blocks must be >=0! Setting value to 0.");
new_number_blocks = 0;
}
else if (new_number_blocks > MAX_CHORUS) {
fluid_log(FLUID_WARN, "chorus: number blocks larger than max. allowed! Setting value to %d.",
MAX_CHORUS);
new_number_blocks = MAX_CHORUS;
}
if (new_speed_Hz < MIN_SPEED_HZ) {
fluid_log(FLUID_WARN, "chorus: speed is too low (min %f)! Setting value to min.",
(double) MIN_SPEED_HZ);
new_speed_Hz = MIN_SPEED_HZ;
}
else if (new_speed_Hz > MAX_SPEED_HZ) {
fluid_log(FLUID_WARN, "chorus: speed must be below %f Hz! Setting value to max.",
(double) MAX_SPEED_HZ);
new_speed_Hz = MAX_SPEED_HZ;
}
if (new_depth_ms < 0.0) {
fluid_log(FLUID_WARN, "chorus: depth must be positive! Setting value to 0.");
new_depth_ms = 0.0;
}
/* Depth: Check for too high value through modulation_depth_samples. */
if (new_level < 0.0) {
fluid_log(FLUID_WARN, "chorus: level must be positive! Setting value to 0.");
new_level = 0.0;
}
else if (new_level > 10) {
fluid_log(FLUID_WARN, "chorus: level must be < 10. A reasonable level is << 1! "
"Setting it to 0.1.");
new_level = 0.1;
}
/* The modulating LFO goes through a full period every x samples: */
modulation_period_samples = lrint(sample_rate / new_speed_Hz);
/* The variation in delay time is x: */
int modulation_depth_samples = (int)
(new_depth_ms / 1000.0 /* convert modulation depth in ms to s*/
* sample_rate);
if (modulation_depth_samples > MAX_SAMPLES) {
fluid_log(FLUID_WARN, "chorus: Too high depth. Setting it to max (%d).", MAX_SAMPLES);
modulation_depth_samples = MAX_SAMPLES;
}
/* initialize LFO table */
if (type == FLUID_CHORUS_MOD_SINE)
sine(lookup_tab, modulation_period_samples, modulation_depth_samples);
else if (type == FLUID_CHORUS_MOD_TRIANGLE)
triangle(lookup_tab, modulation_period_samples, modulation_depth_samples);
else {
fluid_log(FLUID_WARN, "chorus: Unknown modulation type. Using sinewave.");
type = FLUID_CHORUS_MOD_SINE;
sine(lookup_tab, modulation_period_samples, modulation_depth_samples);
}
for (int i = 0; i < number_blocks; i++) {
/* Set the phase of the chorus blocks equally spaced */
phase[i] = (int) ((double) modulation_period_samples
* (double) i / (double) number_blocks);
}
/* Start of the circular buffer */
counter = 0;
type = new_type;
depth_ms = new_depth_ms;
level = new_level;
speed_Hz = new_speed_Hz;
number_blocks = new_number_blocks;
}
//---------------------------------------------------------
// process
//---------------------------------------------------------
void Chorus::process(int n, float *in, float *left_out, float *right_out)
{
for (int sample_index = 0; sample_index < n; sample_index++) {
float d_in = in[sample_index];
float d_out = 0.0f;
/* Write the current sample into the circular buffer */
chorusbuf[counter] = d_in;
for (int i = 0; i < number_blocks; i++) {
/* Calculate the delay in subsamples for the delay line of chorus block nr. */
/* The value in the lookup table is so, that this expression
* will always be positive. It will always include a number of
* full periods of MAX_SAMPLES*INTERPOLATION_SUBSAMPLES to
* remain positive at all times.
*/
int pos_subsamples = (INTERPOLATION_SUBSAMPLES * counter
- lookup_tab[phase[i]]);
int pos_samples = pos_subsamples/INTERPOLATION_SUBSAMPLES;
/* modulo divide by INTERPOLATION_SUBSAMPLES */
pos_subsamples &= INTERPOLATION_SUBSAMPLES_ANDMASK;
for (int ii = 0; ii < INTERPOLATION_SAMPLES; ii++) {
/* Add the delayed signal to the chorus sum d_out Note: The
* delay in the delay line moves backwards for increasing
* delay!*/
/* The & in chorusbuf[...] is equivalent to a division modulo
MAX_SAMPLES, only faster.
*/
d_out += (chorusbuf[pos_samples & MAX_SAMPLES_ANDMASK]
* sinc_table[ii][pos_subsamples]);
pos_samples--;
}
/* Cycle the phase of the modulating LFO */
phase[i]++;
phase[i] %= (modulation_period_samples);
} /* foreach chorus block */
d_out *= level;
/* Add the chorus sum d_out to output */
left_out[sample_index] += d_out;
right_out[sample_index] += d_out;
/* Move forward in circular buffer */
counter++;
counter %= MAX_SAMPLES;
}
}
/* Purpose:
*
* Calculates a modulation waveform (sine) Its value ( modulo
* MAXSAMPLES) varies between 0 and depth*INTERPOLATION_SUBSAMPLES.
* Its period length is len. The waveform data will be used modulo
* MAXSAMPLES only. Since MAXSAMPLES is substracted from the waveform
* a couple of times here, the resulting (current position in
* buffer)-(waveform sample) will always be positive.
*/
void Chorus::sine(int *buf, int len, int depth)
{
for (int i = 0; i < len; i++) {
double val = sin((double) i / (double)len * 2.0 * M_PI);
buf[i] = (int) ((1.0 + val) * (double) depth / 2.0 * (double) INTERPOLATION_SUBSAMPLES);
buf[i] -= 3* MAX_SAMPLES * INTERPOLATION_SUBSAMPLES;
}
}
/* Purpose:
* Calculates a modulation waveform (triangle)
* See fluid_chorus_sine for comments.
*/
void Chorus::triangle(int *buf, int len, int depth)
{
int i=0;
int ii=len-1;
double val;
double val2;
while (i <= ii){
val = i * 2.0 / len * (double)depth * (double) INTERPOLATION_SUBSAMPLES;
val2= (int) (val + 0.5) - 3 * MAX_SAMPLES * INTERPOLATION_SUBSAMPLES;
buf[i++] = (int) val2;
buf[ii--] = (int) val2;
}
}
//---------------------------------------------------------
// setParameter
//---------------------------------------------------------
void Chorus::setParameter(int idx, double value)
{
switch (idx) {
case 0: type = lrint(value); break;
case 1: speed_Hz = value * MAX_SPEED_HZ + MIN_SPEED_HZ; break;
case 2: depth_ms = value * MAX_DEPTH; break;
case 3: number_blocks = lrint(value * 100.0); break;
case 4: new_level = value; break;
}
}
//---------------------------------------------------------
// parameter
//---------------------------------------------------------
double Chorus::parameter(int idx) const
{
switch (idx) {
case 0: return type;
case 1: return (speed_Hz-MIN_SPEED_HZ) / MAX_SPEED_HZ;
case 2: return depth_ms / MAX_DEPTH;
case 3: return number_blocks / 100.0;
case 4: return level;
}
return 0.0;
}
}
|