1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
/*
Copyright (C) 2007 Paul sDavis
Written by Sampo Savolainen
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <xmmintrin.h>
void
x86_sse_find_peaks(float *buf, unsigned nframes, float *min, float *max)
{
__m128 current_max, current_min, work;
// Load max and min values into all four slots of the XMM registers
current_min = _mm_set1_ps(*min);
current_max = _mm_set1_ps(*max);
// Work input until "buf" reaches 16 byte alignment
while ( ((unsigned long)buf) % 16 != 0 && nframes > 0) {
// Load the next float into the work buffer
work = _mm_set1_ps(*buf);
current_min = _mm_min_ps(current_min, work);
current_max = _mm_max_ps(current_max, work);
buf++;
nframes--;
}
// use 64 byte prefetch for quadruple quads
while (nframes >= 16) {
__builtin_prefetch(buf+64,0,0);
work = _mm_load_ps(buf);
current_min = _mm_min_ps(current_min, work);
current_max = _mm_max_ps(current_max, work);
buf+=4;
work = _mm_load_ps(buf);
current_min = _mm_min_ps(current_min, work);
current_max = _mm_max_ps(current_max, work);
buf+=4;
work = _mm_load_ps(buf);
current_min = _mm_min_ps(current_min, work);
current_max = _mm_max_ps(current_max, work);
buf+=4;
work = _mm_load_ps(buf);
current_min = _mm_min_ps(current_min, work);
current_max = _mm_max_ps(current_max, work);
buf+=4;
nframes-=16;
}
// work through aligned buffers
while (nframes >= 4) {
work = _mm_load_ps(buf);
current_min = _mm_min_ps(current_min, work);
current_max = _mm_max_ps(current_max, work);
buf+=4;
nframes-=4;
}
// work through the rest < 4 samples
while ( nframes > 0) {
// Load the next float into the work buffer
work = _mm_set1_ps(*buf);
current_min = _mm_min_ps(current_min, work);
current_max = _mm_max_ps(current_max, work);
buf++;
nframes--;
}
// Find min & max value in current_max through shuffle tricks
work = current_min;
work = _mm_shuffle_ps(work, work, _MM_SHUFFLE(2, 3, 0, 1));
work = _mm_min_ps (work, current_min);
current_min = work;
work = _mm_shuffle_ps(work, work, _MM_SHUFFLE(1, 0, 3, 2));
work = _mm_min_ps (work, current_min);
_mm_store_ss(min, work);
work = current_max;
work = _mm_shuffle_ps(work, work, _MM_SHUFFLE(2, 3, 0, 1));
work = _mm_max_ps (work, current_max);
current_max = work;
work = _mm_shuffle_ps(work, work, _MM_SHUFFLE(1, 0, 3, 2));
work = _mm_max_ps (work, current_max);
_mm_store_ss(max, work);
}
|