1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
|
/* FluidSynth - A Software Synthesizer
*
* Copyright (C) 2003 Peter Hanappe and others.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public License
* as published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
* 02111-1307, USA
*/
#include "conv.h"
#include "fluid.h"
#include "sfont.h"
#include "gen.h"
#include "voice.h"
namespace FluidS {
#define FLUID_SAMPLESANITY_CHECK (1 << 0)
#define FLUID_SAMPLESANITY_STARTUP (1 << 1)
#define fluid_clip(_val, _min, _max) \
{ (_val) = ((_val) < (_min))? (_min) : (((_val) > (_max))? (_max) : (_val)); }
/* used for filter turn off optimization - if filter cutoff is above the
specified value and filter q is below the other value, turn filter off */
#define FLUID_MAX_AUDIBLE_FILTER_FC 19000.0f
#define FLUID_MIN_AUDIBLE_FILTER_Q 1.2f
/* Smallest amplitude that can be perceived (full scale is +/- 0.5)
* 16 bits => 96+4=100 dB dynamic range => 0.00001
* 0.00001 * 2 is approximately 0.00003 :)
*/
#define FLUID_NOISE_FLOOR 0.00003
/* these should be the absolute minimum that FluidSynth can deal with */
#define FLUID_MIN_LOOP_SIZE 2
#define FLUID_MIN_LOOP_PAD 0
/* min vol envelope release (to stop clicks) in SoundFont timecents */
#define FLUID_MIN_VOLENVRELEASE -7200.0f /* ~16ms */
//---------------------------------------------------------
// Voice
//---------------------------------------------------------
Voice::Voice(Fluid* f)
{
_fluid = f;
status = FLUID_VOICE_OFF;
chan = NO_CHANNEL;
key = 0;
vel = 0;
channel = 0;
sample = 0;
/* The 'sustain' and 'finished' segments of the volume / modulation
* envelope are constant. They are never affected by any modulator
* or generator. Therefore it is enough to initialize them once
* during the lifetime of the synth.
*/
volenv_data[FLUID_VOICE_ENVSUSTAIN].count = 0xffffffff;
volenv_data[FLUID_VOICE_ENVSUSTAIN].coeff = 1.0f;
volenv_data[FLUID_VOICE_ENVSUSTAIN].incr = 0.0f;
volenv_data[FLUID_VOICE_ENVSUSTAIN].min = -1.0f;
volenv_data[FLUID_VOICE_ENVSUSTAIN].max = 2.0f;
volenv_data[FLUID_VOICE_ENVFINISHED].count = 0xffffffff;
volenv_data[FLUID_VOICE_ENVFINISHED].coeff = 0.0f;
volenv_data[FLUID_VOICE_ENVFINISHED].incr = 0.0f;
volenv_data[FLUID_VOICE_ENVFINISHED].min = -1.0f;
volenv_data[FLUID_VOICE_ENVFINISHED].max = 1.0f;
modenv_data[FLUID_VOICE_ENVSUSTAIN].count = 0xffffffff;
modenv_data[FLUID_VOICE_ENVSUSTAIN].coeff = 1.0f;
modenv_data[FLUID_VOICE_ENVSUSTAIN].incr = 0.0f;
modenv_data[FLUID_VOICE_ENVSUSTAIN].min = -1.0f;
modenv_data[FLUID_VOICE_ENVSUSTAIN].max = 2.0f;
modenv_data[FLUID_VOICE_ENVFINISHED].count = 0xffffffff;
modenv_data[FLUID_VOICE_ENVFINISHED].coeff = 0.0f;
modenv_data[FLUID_VOICE_ENVFINISHED].incr = 0.0f;
modenv_data[FLUID_VOICE_ENVFINISHED].min = -1.0f;
modenv_data[FLUID_VOICE_ENVFINISHED].max = 1.0f;
}
//---------------------------------------------------------
// init
// Initialize the synthesis process
//---------------------------------------------------------
void Voice::init(Sample* _sample, Channel* _channel, int _key, int _vel,
unsigned int _id, double tuning)
{
// Note: The voice parameters will be initialized later, when the
// generators have been retrieved from the sound font. Here, only
// the 'working memory' of the voice (position in envelopes, history
// of IIR filters, position in sample etc) is initialized.
id = _id;
_noteTuning = tuning;
chan = _channel->getNum();
key = _key;
vel = _vel;
channel = _channel;
mod_count = 0;
sample = _sample;
ticks = 0;
debug = 0;
has_looped = false; // Will be set during voice_write when the 2nd loop point is reached
last_fres = -1; // The filter coefficients have to be calculated later in the DSP loop.
filter_startup = 1; // Set the filter immediately, don't fade between old and new settings
interp_method = _channel->getInterpMethod();
// vol env initialization
volenv_count = 0;
volenv_section = 0;
volenv_val = 0.0f;
amp = 0.0f; // The last value of the volume envelope, used to
// calculate the volume increment during
// processing
// mod env initialization
modenv_count = 0;
modenv_section = 0;
modenv_val = 0.0f;
/* mod lfo */
modlfo_val = 0.0; // Fixme: Retrieve from any other existing
// voice on this channel to keep LFOs in
// unison?
/* vib lfo */
viblfo_val = 0.0f; // Fixme: See mod lfo
/* Clear sample history in filter */
hist1 = 0;
hist2 = 0;
/* Set all the generators to their default value, according to SF
* 2.01 section 8.1.3 (page 48). The value of NRPN messages are
* copied from the channel to the voice's generators. The sound font
* loader overwrites them. The generator values are later converted
* into voice parameters in calculate_runtime_synthesis_parameters.
*/
fluid_gen_init(&gen[0], channel);
/* For a looped sample, this value will be overwritten as soon as the
* loop parameters are initialized (they may depend on modulators).
* This value can be kept, it is a worst-case estimate.
*/
amplitude_that_reaches_noise_floor_nonloop = FLUID_NOISE_FLOOR;
amplitude_that_reaches_noise_floor_loop = FLUID_NOISE_FLOOR;
}
//---------------------------------------------------------
// gen_set
//---------------------------------------------------------
void Voice::gen_set(int i, float val)
{
gen[i].val = val;
gen[i].flags = GEN_SET;
}
//---------------------------------------------------------
// gen_incr
//---------------------------------------------------------
void Voice::gen_incr(int i, float val)
{
gen[i].val += val;
gen[i].flags = GEN_SET;
}
//---------------------------------------------------------
// gen_get
//---------------------------------------------------------
float Voice::gen_get(int g)
{
return gen[g].val;
}
//-----------------------------------------------------------------------------
// write
//
// This is where it all happens. This function is called by the
// synthesizer to generate the sound samples. The synthesizer passes
// four audio buffers: left, right, reverb out, and chorus out.
//
// The biggest part of this function sets the correct values for all
// the dsp parameters (all the control data boil down to only a few
// dsp parameters). The dsp routine is #included in several places (fluid_dsp_core.c).
//-----------------------------------------------------------------------------
void Voice::write(unsigned n, float* out, float* reverb, float* chorus)
{
/* make sure we're playing and that we have sample data */
if (!PLAYING())
return;
if (!sample) {
printf("!sample\n");
off();
return;
}
float target_amp; /* target amplitude */
fluid_env_data_t* env_data;
float x;
float _fres;
/* Range checking for sample- and loop-related parameters
* Initial phase is calculated here*/
check_sample_sanity();
/******************* vol env **********************/
env_data = &volenv_data[volenv_section];
/* skip to the next section of the envelope if necessary */
while (volenv_count >= env_data->count) {
// If we're switching envelope stages from decay to sustain, force the value to be the end value of the previous stage
if (env_data && volenv_section == FLUID_VOICE_ENVDECAY)
volenv_val = env_data->min * env_data->coeff;
env_data = &volenv_data[++volenv_section];
volenv_count = 0;
}
/* calculate the envelope value and check for valid range */
x = env_data->coeff * volenv_val + env_data->incr * n;
if (x < env_data->min) {
x = env_data->min;
volenv_section++;
volenv_count = 0;
}
else if (x > env_data->max) {
x = env_data->max;
volenv_section++;
volenv_count = 0;
}
volenv_val = x;
volenv_count += n;
if (volenv_section == FLUID_VOICE_ENVFINISHED) {
off();
return;
}
fluid_check_fpe ("voice_write vol env");
/******************* mod env **********************/
env_data = &modenv_data[modenv_section];
/* skip to the next section of the envelope if necessary */
while (modenv_count >= env_data->count) {
env_data = &modenv_data[++modenv_section];
modenv_count = 0;
}
/* calculate the envelope value and check for valid range */
x = env_data->coeff * modenv_val + env_data->incr * n;
if (x < env_data->min) {
x = env_data->min;
modenv_section++;
modenv_count = 0;
}
else if (x > env_data->max) {
x = env_data->max;
modenv_section++;
modenv_count = 0;
}
modenv_val = x;
modenv_count += n;
fluid_check_fpe ("voice_write mod env");
/******************* mod lfo **********************/
if (ticks >= modlfo_delay) {
modlfo_val += modlfo_incr * n;
if (modlfo_val > 1.0) {
modlfo_incr = -modlfo_incr;
modlfo_val = (float) 2.0 - modlfo_val;
}
else if (modlfo_val < -1.0) {
modlfo_incr = -modlfo_incr;
modlfo_val = (float) -2.0 - modlfo_val;
}
}
fluid_check_fpe ("voice_write mod LFO");
/******************* vib lfo **********************/
if (ticks >= viblfo_delay) {
viblfo_val += viblfo_incr * n;
if (viblfo_val > (float) 1.0) {
viblfo_incr = -viblfo_incr;
viblfo_val = (float) 2.0 - viblfo_val;
}
else if (viblfo_val < -1.0) {
viblfo_incr = -viblfo_incr;
viblfo_val = (float) -2.0 - viblfo_val;
}
}
fluid_check_fpe ("voice_write Vib LFO");
/******************* amplitude **********************/
/* calculate final amplitude
* - initial gain
* - amplitude envelope
*/
if (volenv_section == FLUID_VOICE_ENVDELAY) {
ticks += n;
return; /* The volume amplitude is in hold phase. No sound is produced. */
}
if (volenv_section == FLUID_VOICE_ENVATTACK) {
/* the envelope is in the attack section: ramp linearly to max value.
* A positive modlfo_to_vol should increase volume (negative attenuation).
*/
target_amp = fluid_atten2amp (attenuation)
* fluid_cb2amp (modlfo_val * -modlfo_to_vol)
* volenv_val;
}
else {
float amplitude_that_reaches_noise_floor;
float amp_max;
target_amp = fluid_atten2amp (attenuation)
* fluid_cb2amp (960.0f * (1.0f - volenv_val)
+ modlfo_val * -modlfo_to_vol);
/* We turn off a voice, if the volume has dropped low enough. */
/* A voice can be turned off, when an estimate for the volume
* (upper bound) falls below that volume, that will drop the
* sample below the noise floor.
*/
/* If the loop amplitude is known, we can use it if the voice loop is within
* the sample loop
*/
/* Is the playing pointer already in the loop? */
if (has_looped)
amplitude_that_reaches_noise_floor = amplitude_that_reaches_noise_floor_loop;
else
amplitude_that_reaches_noise_floor = amplitude_that_reaches_noise_floor_nonloop;
/* voice->attenuation_min is a lower boundary for the attenuation
* now and in the future (possibly 0 in the worst case). Now the
* amplitude of sample and volenv cannot exceed amp_max (since
* volenv_val can only drop):
*/
amp_max = fluid_atten2amp (min_attenuation_cB) * volenv_val;
/* And if amp_max is already smaller than the known amplitude,
* which will attenuate the sample below the noise floor, then we
* can safely turn off the voice. Duh. */
if (amp_max < amplitude_that_reaches_noise_floor) {
off();
ticks += n;
return;
}
}
/* Volume increment to go from voice->amp to target_amp in FLUID_BUFSIZE steps */
amp_incr = (target_amp - amp) / n;
fluid_check_fpe ("voice_write amplitude calculation");
/* no volume and not changing? - No need to process */
if ((amp == 0.0f) && (amp_incr == 0.0f)) {
ticks += n;
return;
}
/* Calculate the number of samples, that the DSP loop advances
* through the original waveform with each step in the output
* buffer. It is the ratio between the frequencies of original
* waveform and output waveform.*/
{
float cent = pitch + modlfo_val * modlfo_to_pitch
+ viblfo_val * viblfo_to_pitch
+ modenv_val * modenv_to_pitch;
phase_incr = _fluid->ct2hz_real(cent) / root_pitch;
}
/* if phase_incr is not advancing, set it to the minimum fraction value (prevent stuckage) */
if (phase_incr == 0)
phase_incr = 1;
/*************** resonant filter ******************/
/* calculate the frequency of the resonant filter in Hz */
_fres = _fluid->ct2hz_real(fres
+ modlfo_val * modlfo_to_fc
+ modenv_val * modenv_to_fc);
/* FIXME - Still potential for a click during turn on, can we interpolate
between 20khz cutoff and 0 Q? */
/* I removed the optimization of turning the filter off when the
* resonance frequence is above the maximum frequency. Instead, the
* filter frequency is set to a maximum of 0.45 times the sampling
* rate. For a 44100 kHz sampling rate, this amounts to 19845
* Hz. The reason is that there were problems with anti-aliasing when the
* synthesizer was run at lower sampling rates. Thanks to Stephan
* Tassart for pointing me to this bug. By turning the filter on and
* clipping the maximum filter frequency at 0.45*srate, the filter
* is used as an anti-aliasing filter. */
if (_fres > 0.45f * _fluid->sample_rate)
_fres = 0.45f * _fluid->sample_rate;
else if (_fres < 5)
_fres = 5;
/* if filter enabled and there is a significant frequency change.. */
if ((qAbs(_fres - last_fres) > 0.01)) {
/* The filter coefficients have to be recalculated (filter
* parameters have changed). Recalculation for various reasons is
* forced by setting last_fres to -1. The flag filter_startup
* indicates, that the DSP loop runs for the first time, in this
* case, the filter is set directly, instead of smoothly fading
* between old and new settings.
*
* Those equations from Robert Bristow-Johnson's `Cookbook
* formulae for audio EQ biquad filter coefficients', obtained
* from Harmony-central.com / Computer / Programming. They are
* the result of the bilinear transform on an analogue filter
* prototype. To quote, `BLT frequency warping has been taken
* into account for both significant frequency relocation and for
* bandwidth readjustment'. */
float omega = (float) (2.0 * M_PI * (_fres / ((float) _fluid->sample_rate)));
float sin_coeff = (float) sin(omega);
float cos_coeff = (float) cos(omega);
float alpha_coeff = sin_coeff / (2.0f * q_lin);
float a0_inv = 1.0f / (1.0f + alpha_coeff);
/* Calculate the filter coefficients. All coefficients are
* normalized by a0. Think of `a1' as `a1/a0'.
*
* Here a couple of multiplications are saved by reusing common expressions.
* The original equations should be:
* b0=(1.-cos_coeff)*a0_inv*0.5*voice->filter_gain;
* b1=(1.-cos_coeff)*a0_inv*voice->filter_gain;
* b2=(1.-cos_coeff)*a0_inv*0.5*voice->filter_gain; */
float a1_temp = -2.0f * cos_coeff * a0_inv;
float a2_temp = (1.0f - alpha_coeff) * a0_inv;
float b1_temp = (1.0f - cos_coeff) * a0_inv * filter_gain;
/* both b0 -and- b2 */
float b02_temp = b1_temp * 0.5f;
if (filter_startup) {
/* The filter is calculated, because the voice was started up.
* In this case set the filter coefficients without delay.
*/
a1 = a1_temp;
a2 = a2_temp;
b02 = b02_temp;
b1 = b1_temp;
filter_coeff_incr_count = 0;
filter_startup = 0;
// printf("Setting initial filter coefficients.\n");
}
else {
/* The filter frequency is changed. Calculate an increment
* factor, so that the new setting is reached after one buffer
* length. x_incr is added to the current value FLUID_BUFSIZE
* times. The length is arbitrarily chosen. Longer than one
* buffer will sacrifice some performance, though. Note: If
* the filter is still too 'grainy', then increase this number
* at will.
*/
#define FILTER_TRANSITION_SAMPLES 64 // (FLUID_BUFSIZE)
a1_incr = (a1_temp - a1) / FILTER_TRANSITION_SAMPLES;
a2_incr = (a2_temp - a2) / FILTER_TRANSITION_SAMPLES;
b02_incr = (b02_temp - b02) / FILTER_TRANSITION_SAMPLES;
b1_incr = (b1_temp - b1) / FILTER_TRANSITION_SAMPLES;
/* Have to add the increments filter_coeff_incr_count times. */
filter_coeff_incr_count = FILTER_TRANSITION_SAMPLES;
}
last_fres = _fres;
fluid_check_fpe ("voice_write filter calculation");
}
fluid_check_fpe ("voice_write DSP coefficients");
/*********************** run the dsp chain ************************
* The sample is mixed with the output buffer.
* The buffer has to be filled from 0 to FLUID_BUFSIZE-1.
* Depending on the position in the loop and the loop size, this
* may require several runs. */
float l_dsp_buf[n];
dsp_buf = l_dsp_buf;
unsigned count;
switch (interp_method) {
case FLUID_INTERP_NONE:
count = dsp_float_interpolate_none(n);
break;
case FLUID_INTERP_LINEAR:
count = dsp_float_interpolate_linear(n);
break;
case FLUID_INTERP_4THORDER:
default:
count = dsp_float_interpolate_4th_order(n);
break;
case FLUID_INTERP_7THORDER:
count = dsp_float_interpolate_7th_order(n);
break;
}
if (count > 0)
effects(count, out, reverb, chorus);
/* turn off voice if short count (sample ended and not looping) */
if (count < n)
off();
ticks += n;
}
//---------------------------------------------------------
// voice_start
//---------------------------------------------------------
void Voice::voice_start()
{
/* The maximum volume of the loop is calculated and cached once for each
* sample with its nominal loop settings. This happens, when the sample is used
* for the first time.*/
/*
* in this function we calculate the values of all the parameters. the
* parameters are converted to their most useful unit for the DSP
* algorithm, for example, number of samples instead of
* timecents. Some parameters keep their "perceptual" unit and
* conversion will be done in the DSP function. This is the case, for
* example, for the pitch since it is modulated by the controllers in
* cents. */
static const int list_of_generators_to_initialize[35] = {
GEN_STARTADDROFS, // SF2.01 page 48 #0
GEN_ENDADDROFS, // #1
GEN_STARTLOOPADDROFS, // #2
GEN_ENDLOOPADDROFS, // #3
// GEN_STARTADDRCOARSEOFS see comment below [1] #4
GEN_MODLFOTOPITCH, // #5
GEN_VIBLFOTOPITCH, // #6
GEN_MODENVTOPITCH, // #7
GEN_FILTERFC, // #8
GEN_FILTERQ, // #9
GEN_MODLFOTOFILTERFC, // #10
GEN_MODENVTOFILTERFC, // #11
// GEN_ENDADDRCOARSEOFS [1] #12
GEN_MODLFOTOVOL, // #13
// not defined #14
GEN_CHORUSSEND, // #15
GEN_REVERBSEND, // #16
GEN_PAN, // #17
// not defined #18
// not defined #19
// not defined #20
GEN_MODLFODELAY, // #21
GEN_MODLFOFREQ, // #22
GEN_VIBLFODELAY, // #23
GEN_VIBLFOFREQ, // #24
GEN_MODENVDELAY, // #25
GEN_MODENVATTACK, // #26
GEN_MODENVHOLD, // #27
GEN_MODENVDECAY, // #28
// GEN_MODENVSUSTAIN [1] #29
GEN_MODENVRELEASE, // #30
// GEN_KEYTOMODENVHOLD [1] #31
// GEN_KEYTOMODENVDECAY [1] #32
GEN_VOLENVDELAY, // #33
GEN_VOLENVATTACK, // #34
GEN_VOLENVHOLD, // #35
GEN_VOLENVDECAY, // #36
// GEN_VOLENVSUSTAIN [1] #37
GEN_VOLENVRELEASE, // #38
// GEN_KEYTOVOLENVHOLD [1] #39
// GEN_KEYTOVOLENVDECAY [1] #40
// GEN_STARTLOOPADDRCOARSEOFS [1] #45
GEN_KEYNUM, // #46
GEN_VELOCITY, // #47
GEN_ATTENUATION, // #48
// GEN_ENDLOOPADDRCOARSEOFS [1] #50
// GEN_COARSETUNE [1] #51
// GEN_FINETUNE [1] #52
GEN_OVERRIDEROOTKEY, // #58
GEN_PITCH, // ---
-1 // end-of-list marker
};
/* When the voice is made ready for the synthesis process, a lot of
* voice-internal parameters have to be calculated.
*
* At this point, the sound font has already set the -nominal- value
* for all generators (excluding GEN_PITCH). Most generators can be
* modulated - they include a nominal value and an offset (which
* changes with velocity, note number, channel parameters like
* aftertouch, mod wheel...) Now this offset will be calculated as
* follows:
*
* - Process each modulator once.
* - Calculate its output value.
* - Find the target generator.
* - Add the output value to the modulation value of the generator.
*
* Note: The generators have been initialized with
* fluid_gen_set_default_values.
*/
for (int i = 0; i < mod_count; i++) {
Mod* m = &mod[i];
float modval = m->get_value(channel, this);
int dest_gen_index = m->dest;
Generator* dest_gen = &gen[dest_gen_index];
dest_gen->mod += modval;
}
/* The GEN_PITCH is a hack to fit the pitch bend controller into the
* modulator paradigm. Now the nominal pitch of the key is set.
* Note about SCALETUNE: SF2.01 8.1.3 says, that this generator is a
* non-realtime parameter. So we don't allow modulation (as opposed
* to _GEN(voice, GEN_SCALETUNE) When the scale tuning is varied,
* one key remains fixed. Here C3 (MIDI number 60) is used.
*/
gen[GEN_PITCH].val = _noteTuning + _fluid->getPitch(60) + (gen[GEN_SCALETUNE].val * .01 *
(_fluid->getPitch(key) - _fluid->getPitch(60)));
/* Now the generators are initialized, nominal and modulation value.
* The voice parameters (which depend on generators) are calculated
* with update_param. Processing the list of generator
* changes will calculate each voice parameter once.
*
* Note [1]: Some voice parameters depend on several generators. For
* example, the pitch depends on GEN_COARSETUNE, GEN_FINETUNE and
* GEN_PITCH. voice->pitch. Unnecessary recalculation is avoided
* by removing all but one generator from the list of voice
* parameters. Same with GEN_XXX and GEN_XXXCOARSE: the
* initialisation list contains only GEN_XXX.
*/
/* Calculate the voice parameter(s) dependent on each generator. */
for (int i = 0; list_of_generators_to_initialize[i] != -1; i++)
update_param(list_of_generators_to_initialize[i]);
/* Make an estimate on how loud this voice can get at any time (attenuation). */
min_attenuation_cB = get_lower_boundary_for_attenuation();
/* Force setting of the phase at the first DSP loop run
* This cannot be done earlier, because it depends on modulators.
*/
check_sample_sanity_flag = FLUID_SAMPLESANITY_STARTUP;
status = FLUID_VOICE_ON;
}
/*
* calculate_hold_decay_frames
*/
int Voice::calculate_hold_decay_frames(int gen_base, int gen_key2base, int is_decay)
{
/* Purpose:
*
* Returns the number of DSP loops, that correspond to the hold
* (is_decay=0) or decay (is_decay=1) time.
* gen_base=GEN_VOLENVHOLD, GEN_VOLENVDECAY, GEN_MODENVHOLD,
* GEN_MODENVDECAY gen_key2base=GEN_KEYTOVOLENVHOLD,
* GEN_KEYTOVOLENVDECAY, GEN_KEYTOMODENVHOLD, GEN_KEYTOMODENVDECAY
*
* SF2.01 section 8.4.3 # 31, 32, 39, 40
* GEN_KEYTOxxxENVxxx uses key 60 as 'origin'.
* The unit of the generator is timecents per key number.
* If KEYTOxxxENVxxx is 100, a key one octave over key 60 (72)
* will cause (60-72)*100=-1200 timecents of time variation.
* The time is cut in half.
*/
float timecents = (GEN(gen_base) + GEN(gen_key2base) * (60.0 - key));
/* Range checking */
if (is_decay){
/* SF 2.01 section 8.1.3 # 28, 36 */
if (timecents > 8000.0)
timecents = 8000.0;
}
else {
/* SF 2.01 section 8.1.3 # 27, 35 */
if (timecents > 5000)
timecents = 5000.0;
/* SF 2.01 section 8.1.2 # 27, 35:
* The most negative number indicates no hold time
*/
if (timecents <= -32768.)
return 0;
}
/* SF 2.01 section 8.1.3 # 27, 28, 35, 36 */
if (timecents < -12000.0)
timecents = -12000.0;
float seconds = fluid_tc2sec(timecents);
return (int)((float)_fluid->sample_rate * seconds);
}
/*
* update_param
*
* Purpose:
*
* The value of a generator (gen) has changed. (The different
* generators are listed in fluid.h, or in SF2.01 page 48-49)
* Now the dependent 'voice' parameters are calculated.
*
* fluid_voice_update_param can be called during the setup of the
* voice (to calculate the initial value for a voice parameter), or
* during its operation (a generator has been changed due to
* real-time parameter modifications like pitch-bend).
*
* Note: The generator holds three values: The base value .val, an
* offset caused by modulators .mod, and an offset caused by the
* NRPN system. _GEN(voice, generator_enumerator) returns the sum
* of all three.
*/
void Voice::update_param(int _gen)
{
double q_dB;
float x;
float y;
unsigned int count;
// Alternate attenuation scale used by EMU10K1 cards when setting the attenuation at the preset or instrument level within the SoundFont bank.
static const float ALT_ATTENUATION_SCALE = 0.4;
double gain = 1.0 / 32768.0f;
switch (_gen) {
case GEN_PAN:
/* range checking is done in the fluid_pan function */
pan = GEN(GEN_PAN);
amp_left = fluid_pan(pan, 1) * gain;
amp_right = fluid_pan(pan, 0) * gain;
break;
case GEN_ATTENUATION:
attenuation = gen[GEN_ATTENUATION].val * ALT_ATTENUATION_SCALE + gen[GEN_ATTENUATION].mod + gen[GEN_ATTENUATION].nrpn;
/* Range: SF2.01 section 8.1.3 # 48
* Motivation for range checking:
* OHPiano.SF2 sets initial attenuation to a whooping -96 dB
*/
attenuation = qBound(0.0f, attenuation, 1440.0f);
break;
/* The pitch is calculated from three different generators.
* Read comment in fluid.h about GEN_PITCH.
*/
case GEN_PITCH:
case GEN_COARSETUNE:
case GEN_FINETUNE:
/* The testing for allowed range is done in 'fluid_ct2hz' */
pitch = GEN(GEN_PITCH) + 100.0f * GEN(GEN_COARSETUNE) + GEN(GEN_FINETUNE);
break;
case GEN_REVERBSEND:
/* The generator unit is 'tenths of a percent'. */
// reverb_send = GEN(GEN_REVERBSEND) / 1000.0f;
reverb_send = float(channel->cc[EFFECTS_DEPTH1]) / 128.0;
// fluid_clip(reverb_send, 0.0, 1.0);
amp_reverb = reverb_send * gain;
break;
case GEN_CHORUSSEND:
/* The generator unit is 'tenths of a percent'. */
chorus_send = GEN(GEN_CHORUSSEND) / 1000.0f;
fluid_clip(chorus_send, 0.0, 1.0);
amp_chorus = chorus_send * gain;
break;
case GEN_OVERRIDEROOTKEY:
/* This is a non-realtime parameter. Therefore the .mod part of the generator
* can be neglected.
* NOTE: origpitch sets MIDI root note while pitchadj is a fine tuning amount
* which offsets the original rate. This means that the fine tuning is
* inverted with respect to the root note (so subtract it, not add).
*/
if (gen[GEN_OVERRIDEROOTKEY].val > -1) { //FIXME: use flag instead of -1
root_pitch = gen[GEN_OVERRIDEROOTKEY].val * 100.0f - sample->pitchadj;
}
else {
root_pitch = sample->origpitch * 100.0f - sample->pitchadj;
}
root_pitch = _fluid->ct2hz(root_pitch);
if (sample != 0)
root_pitch *= (float) _fluid->sample_rate / sample->samplerate;
break;
case GEN_FILTERFC:
/* The resonance frequency is converted from absolute cents to
* midicents .val and .mod are both used, this permits real-time
* modulation. The allowed range is tested in the 'fluid_ct2hz'
* function [PH,20021214]
*/
fres = GEN(GEN_FILTERFC);
/* The synthesis loop will have to recalculate the filter
* coefficients. */
last_fres = -1.0f;
break;
case GEN_FILTERQ:
/* The generator contains 'centibels' (1/10 dB) => divide by 10 to
* obtain dB
*/
q_dB = GEN(GEN_FILTERQ) / 10.0f;
/* Range: SF2.01 section 8.1.3 # 8 (convert from cB to dB => /10) */
fluid_clip(q_dB, 0.0f, 96.0f);
/* Short version: Modify the Q definition in a way, that a Q of 0
* dB leads to no resonance hump in the freq. response.
*
* Long version: From SF2.01, page 39, item 9 (initialFilterQ):
* "The gain at the cutoff frequency may be less than zero when
* zero is specified". Assume q_dB=0 / q_lin=1: If we would leave
* q as it is, then this results in a 3 dB hump slightly below
* fc. At fc, the gain is exactly the DC gain (0 dB). What is
* (probably) meant here is that the filter does not show a
* resonance hump for q_dB=0. In this case, the corresponding
* q_lin is 1/sqrt(2)=0.707. The filter should have 3 dB of
* attenuation at fc now. In this case Q_dB is the height of the
* resonance peak not over the DC gain, but over the frequency
* response of a non-resonant filter. This idea is implemented as
* follows:
*/
q_dB -= 3.01f;
/* The 'sound font' Q is defined in dB. The filter needs a linear
q. Convert.
*/
q_lin = (float) (pow(10.0f, q_dB / 20.0f));
/* SF 2.01 page 59:
*
* The SoundFont specs ask for a gain reduction equal to half the
* height of the resonance peak (Q). For example, for a 10 dB
* resonance peak, the gain is reduced by 5 dB. This is done by
* multiplying the total gain with sqrt(1/Q). `Sqrt' divides dB
* by 2 (100 lin = 40 dB, 10 lin = 20 dB, 3.16 lin = 10 dB etc)
* The gain is later factored into the 'b' coefficients
* (numerator of the filter equation). This gain factor depends
* only on Q, so this is the right place to calculate it.
*/
filter_gain = (float) (1.0 / sqrt(q_lin));
/* The synthesis loop will have to recalculate the filter coefficients. */
last_fres = -1.;
break;
case GEN_MODLFOTOPITCH:
modlfo_to_pitch = GEN(GEN_MODLFOTOPITCH);
fluid_clip(modlfo_to_pitch, -12000.0, 12000.0);
break;
case GEN_MODLFOTOVOL:
modlfo_to_vol = GEN(GEN_MODLFOTOVOL);
fluid_clip(modlfo_to_vol, -960.0, 960.0);
break;
case GEN_MODLFOTOFILTERFC:
modlfo_to_fc = GEN(GEN_MODLFOTOFILTERFC);
fluid_clip(modlfo_to_fc, -12000, 12000);
break;
case GEN_MODLFODELAY:
x = GEN(GEN_MODLFODELAY);
fluid_clip(x, -12000.0f, 5000.0f);
modlfo_delay = (unsigned int) (_fluid->sample_rate * fluid_tc2sec_delay(x));
break;
case GEN_MODLFOFREQ:
/* - the frequency is converted into a delta value, per frame
* - the delay into a sample delay
*/
x = GEN(GEN_MODLFOFREQ);
fluid_clip(x, -16000.0f, 4500.0f);
modlfo_incr = (4.0f * fluid_act2hz(x) / _fluid->sample_rate);
break;
case GEN_VIBLFOFREQ:
/* vib lfo
*
* - the frequency is converted into a delta value per frame
* - the delay into a sample delay
*/
x = GEN(GEN_VIBLFOFREQ);
fluid_clip(x, -16000.0f, 4500.0f);
viblfo_incr = (4.0f * fluid_act2hz(x) / _fluid->sample_rate);
break;
case GEN_VIBLFODELAY:
x = GEN(GEN_VIBLFODELAY);
fluid_clip(x, -12000.0f, 5000.0f);
viblfo_delay = (unsigned int) (_fluid->sample_rate * fluid_tc2sec_delay(x));
break;
case GEN_VIBLFOTOPITCH:
viblfo_to_pitch = GEN(GEN_VIBLFOTOPITCH);
fluid_clip(viblfo_to_pitch, -12000.0, 12000.0);
break;
case GEN_KEYNUM:
/* GEN_KEYNUM: SF2.01 page 46, item 46
*
* If this generator is active, it forces the key number to its
* value. Non-realtime controller.
*
* There is a flag, which should indicate, whether a generator is
* enabled or not. But here we rely on the default value of -1.
*/
x = GEN(GEN_KEYNUM);
if (x >= 0)
key = x;
break;
case GEN_VELOCITY:
/* GEN_VELOCITY: SF2.01 page 46, item 47
*
* If this generator is active, it forces the velocity to its
* value. Non-realtime controller.
*
* There is a flag, which should indicate, whether a generator is
* enabled or not. But here we rely on the default value of -1.
*/
x = GEN(GEN_VELOCITY);
if (x > 0)
vel = x;
break;
case GEN_MODENVTOPITCH:
modenv_to_pitch = GEN(GEN_MODENVTOPITCH);
fluid_clip(modenv_to_pitch, -12000.0, 12000.0);
break;
case GEN_MODENVTOFILTERFC:
modenv_to_fc = GEN(GEN_MODENVTOFILTERFC);
/* Range: SF2.01 section 8.1.3 # 1
* Motivation for range checking:
* Filter is reported to make funny noises now and then
*/
fluid_clip(modenv_to_fc, -12000.0, 12000.0);
break;
/* sample start and ends points
*
* Range checking is initiated via the
* check_sample_sanity flag,
* because it is impossible to check here:
* During the voice setup, all modulators are processed, while
* the voice is inactive. Therefore, illegal settings may
* occur during the setup (for example: First move the loop
* end point ahead of the loop start point => invalid, then
* move the loop start point forward => valid again.
*/
case GEN_STARTADDROFS: /* SF2.01 section 8.1.3 # 0 */
case GEN_STARTADDRCOARSEOFS: /* SF2.01 section 8.1.3 # 4 */
if (sample != 0) {
start = (sample->start
+ (int) GEN(GEN_STARTADDROFS)
+ 32768 * (int) GEN(GEN_STARTADDRCOARSEOFS));
check_sample_sanity_flag = FLUID_SAMPLESANITY_CHECK;
}
break;
case GEN_ENDADDROFS: /* SF2.01 section 8.1.3 # 1 */
case GEN_ENDADDRCOARSEOFS: /* SF2.01 section 8.1.3 # 12 */
if (sample != 0) {
end = (sample->end
+ (int) GEN(GEN_ENDADDROFS)
+ 32768 * (int) GEN(GEN_ENDADDRCOARSEOFS));
check_sample_sanity_flag = FLUID_SAMPLESANITY_CHECK;
}
break;
case GEN_STARTLOOPADDROFS: /* SF2.01 section 8.1.3 # 2 */
case GEN_STARTLOOPADDRCOARSEOFS: /* SF2.01 section 8.1.3 # 45 */
if (sample != 0) {
loopstart = (sample->loopstart
+ (int) GEN(GEN_STARTLOOPADDROFS)
+ 32768 * (int) GEN(GEN_STARTLOOPADDRCOARSEOFS));
check_sample_sanity_flag = FLUID_SAMPLESANITY_CHECK;
}
break;
case GEN_ENDLOOPADDROFS: /* SF2.01 section 8.1.3 # 3 */
case GEN_ENDLOOPADDRCOARSEOFS: /* SF2.01 section 8.1.3 # 50 */
if (sample != 0) {
loopend = (sample->loopend
+ (int) GEN(GEN_ENDLOOPADDROFS)
+ 32768 * (int) GEN(GEN_ENDLOOPADDRCOARSEOFS));
check_sample_sanity_flag = FLUID_SAMPLESANITY_CHECK;
}
break;
/* Conversion functions differ in range limit */
#define NUM_FRAMES_DELAY(_v) (unsigned int) (_fluid->sample_rate * fluid_tc2sec_delay(_v))
#define NUM_FRAMES_ATTACK(_v) (unsigned int) (_fluid->sample_rate * fluid_tc2sec_attack(_v))
#define NUM_FRAMES_RELEASE(_v) (unsigned int) (_fluid->sample_rate * fluid_tc2sec_release(_v))
/* volume envelope
*
* - delay and hold times are converted to absolute number of samples
* - sustain is converted to its absolute value
* - attack, decay and release are converted to their increment per sample
*/
case GEN_VOLENVDELAY: /* SF2.01 section 8.1.3 # 33 */
x = GEN(GEN_VOLENVDELAY);
fluid_clip(x, -12000.0f, 5000.0f);
count = NUM_FRAMES_DELAY(x);
volenv_data[FLUID_VOICE_ENVDELAY].count = count;
volenv_data[FLUID_VOICE_ENVDELAY].coeff = 0.0f;
volenv_data[FLUID_VOICE_ENVDELAY].incr = 0.0f;
volenv_data[FLUID_VOICE_ENVDELAY].min = -1.0f;
volenv_data[FLUID_VOICE_ENVDELAY].max = 1.0f;
break;
case GEN_VOLENVATTACK: /* SF2.01 section 8.1.3 # 34 */
x = GEN(GEN_VOLENVATTACK);
fluid_clip(x, -12000.0f, 8000.0f);
count = 1 + NUM_FRAMES_ATTACK(x);
volenv_data[FLUID_VOICE_ENVATTACK].count = count;
volenv_data[FLUID_VOICE_ENVATTACK].coeff = 1.0f;
volenv_data[FLUID_VOICE_ENVATTACK].incr = count ? 1.0f / count : 0.0f;
volenv_data[FLUID_VOICE_ENVATTACK].min = -1.0f;
volenv_data[FLUID_VOICE_ENVATTACK].max = 1.0f;
break;
case GEN_VOLENVHOLD: /* SF2.01 section 8.1.3 # 35 */
case GEN_KEYTOVOLENVHOLD: /* SF2.01 section 8.1.3 # 39 */
count = calculate_hold_decay_frames(GEN_VOLENVHOLD, GEN_KEYTOVOLENVHOLD, 0); /* 0 means: hold */
volenv_data[FLUID_VOICE_ENVHOLD].count = count;
volenv_data[FLUID_VOICE_ENVHOLD].coeff = 1.0f;
volenv_data[FLUID_VOICE_ENVHOLD].incr = 0.0f;
volenv_data[FLUID_VOICE_ENVHOLD].min = -1.0f;
volenv_data[FLUID_VOICE_ENVHOLD].max = 2.0f;
break;
case GEN_VOLENVDECAY: /* SF2.01 section 8.1.3 # 36 */
case GEN_VOLENVSUSTAIN: /* SF2.01 section 8.1.3 # 37 */
case GEN_KEYTOVOLENVDECAY: /* SF2.01 section 8.1.3 # 40 */
y = 1.0f - 0.001f * GEN(GEN_VOLENVSUSTAIN);
fluid_clip(y, 0.0f, 1.0f);
count = calculate_hold_decay_frames(GEN_VOLENVDECAY, GEN_KEYTOVOLENVDECAY, 1); /* 1 for decay */
volenv_data[FLUID_VOICE_ENVDECAY].count = count;
volenv_data[FLUID_VOICE_ENVDECAY].coeff = 1.0f;
volenv_data[FLUID_VOICE_ENVDECAY].incr = count ? -1.0f / count : 0.0f;
volenv_data[FLUID_VOICE_ENVDECAY].min = y;
volenv_data[FLUID_VOICE_ENVDECAY].max = 2.0f;
break;
case GEN_VOLENVRELEASE: /* SF2.01 section 8.1.3 # 38 */
x = GEN(GEN_VOLENVRELEASE);
fluid_clip(x, FLUID_MIN_VOLENVRELEASE, 8000.0f);
count = 1 + NUM_FRAMES_RELEASE(x);
volenv_data[FLUID_VOICE_ENVRELEASE].count = count;
volenv_data[FLUID_VOICE_ENVRELEASE].coeff = 1.0f;
volenv_data[FLUID_VOICE_ENVRELEASE].incr = count ? -1.0f / count : 0.0f;
volenv_data[FLUID_VOICE_ENVRELEASE].min = 0.0f;
volenv_data[FLUID_VOICE_ENVRELEASE].max = 1.0f;
break;
/* Modulation envelope */
case GEN_MODENVDELAY: /* SF2.01 section 8.1.3 # 25 */
x = GEN(GEN_MODENVDELAY);
fluid_clip(x, -12000.0f, 5000.0f);
modenv_data[FLUID_VOICE_ENVDELAY].count = NUM_FRAMES_DELAY(x);
modenv_data[FLUID_VOICE_ENVDELAY].coeff = 0.0f;
modenv_data[FLUID_VOICE_ENVDELAY].incr = 0.0f;
modenv_data[FLUID_VOICE_ENVDELAY].min = -1.0f;
modenv_data[FLUID_VOICE_ENVDELAY].max = 1.0f;
break;
case GEN_MODENVATTACK: /* SF2.01 section 8.1.3 # 26 */
x = GEN(GEN_MODENVATTACK);
fluid_clip(x, -12000.0f, 8000.0f);
count = 1 + NUM_FRAMES_ATTACK(x);
modenv_data[FLUID_VOICE_ENVATTACK].count = count;
modenv_data[FLUID_VOICE_ENVATTACK].coeff = 1.0f;
modenv_data[FLUID_VOICE_ENVATTACK].incr = count ? 1.0f / count : 0.0f;
modenv_data[FLUID_VOICE_ENVATTACK].min = -1.0f;
modenv_data[FLUID_VOICE_ENVATTACK].max = 1.0f;
break;
case GEN_MODENVHOLD: /* SF2.01 section 8.1.3 # 27 */
case GEN_KEYTOMODENVHOLD: /* SF2.01 section 8.1.3 # 31 */
count = calculate_hold_decay_frames(GEN_MODENVHOLD, GEN_KEYTOMODENVHOLD, 0); /* 1 means: hold */
modenv_data[FLUID_VOICE_ENVHOLD].count = count;
modenv_data[FLUID_VOICE_ENVHOLD].coeff = 1.0f;
modenv_data[FLUID_VOICE_ENVHOLD].incr = 0.0f;
modenv_data[FLUID_VOICE_ENVHOLD].min = -1.0f;
modenv_data[FLUID_VOICE_ENVHOLD].max = 2.0f;
break;
case GEN_MODENVDECAY: /* SF 2.01 section 8.1.3 # 28 */
case GEN_MODENVSUSTAIN: /* SF 2.01 section 8.1.3 # 29 */
case GEN_KEYTOMODENVDECAY: /* SF 2.01 section 8.1.3 # 32 */
count = calculate_hold_decay_frames(GEN_MODENVDECAY, GEN_KEYTOMODENVDECAY, 1); /* 1 for decay */
y = 1.0f - 0.001f * GEN(GEN_MODENVSUSTAIN);
fluid_clip(y, 0.0f, 1.0f);
modenv_data[FLUID_VOICE_ENVDECAY].count = count;
modenv_data[FLUID_VOICE_ENVDECAY].coeff = 1.0f;
modenv_data[FLUID_VOICE_ENVDECAY].incr = count ? -1.0f / count : 0.0f;
modenv_data[FLUID_VOICE_ENVDECAY].min = y;
modenv_data[FLUID_VOICE_ENVDECAY].max = 2.0f;
break;
case GEN_MODENVRELEASE: /* SF 2.01 section 8.1.3 # 30 */
x = GEN(GEN_MODENVRELEASE);
fluid_clip(x, -12000.0f, 8000.0f);
count = 1 + NUM_FRAMES_RELEASE(x);
modenv_data[FLUID_VOICE_ENVRELEASE].count = count;
modenv_data[FLUID_VOICE_ENVRELEASE].coeff = 1.0f;
modenv_data[FLUID_VOICE_ENVRELEASE].incr = count ? -1.0f / count : 0.0;
modenv_data[FLUID_VOICE_ENVRELEASE].min = 0.0f;
modenv_data[FLUID_VOICE_ENVRELEASE].max = 2.0f;
break;
} /* switch gen */
}
/**
* fluid_voice_modulate
*
* In this implementation, I want to make sure that all controllers
* are event based: the parameter values of the DSP algorithm should
* only be updates when a controller event arrived and not at every
* iteration of the audio cycle (which would probably be feasible if
* the synth was made in silicon).
*
* The update is done in three steps:
*
* - first, we look for all the modulators that have the changed
* controller as a source. This will yield a list of generators that
* will be changed because of the controller event.
*
* - For every changed generator, calculate its new value. This is the
* sum of its original value plus the values of al the attached
* modulators.
*
* - For every changed generator, convert its value to the correct
* unit of the corresponding DSP parameter
* */
void Voice::modulate(bool _cc, int _ctrl)
{
for (int i = 0; i < mod_count; i++) {
Mod* m = &mod[i];
/* step 1: find all the modulators that have the changed controller
* as input source.
*/
if (m->has_source(_cc, _ctrl)) {
int g = m->get_dest();
float modval = 0.0;
/* step 2: for every changed modulator, calculate the modulation
* value of its associated generator
*/
for (int k = 0; k < mod_count; k++) {
if (fluid_mod_has_dest(&mod[k], g)) {
modval += mod[k].get_value(channel, this);
}
}
gen[g].set_mod(modval);
/* step 3: now that we have the new value of the generator,
* recalculate the parameter values that are derived from the
* generator
*/
update_param(g);
}
}
}
/**
* fluid_voice_modulate_all
*
* Update all the modulators. This function is called after a
* ALL_CTRL_OFF MIDI message has been received (CC 121).
*
*/
void Voice::modulate_all()
{
/* Loop through all the modulators.
FIXME: we should loop through the set of generators instead of
the set of modulators. We risk to call 'fluid_voice_update_param'
several times for the same generator if several modulators have
that generator as destination. It's not an error, just a wast of
energy (think polution, global warming, unhappy musicians, ...)
*/
for (int i = 0; i < mod_count; i++) {
Mod* m = &mod[i];
int g = m->get_dest();
float modval = 0.0;
/* Accumulate the modulation values of all the modulators with
* destination generator 'gen'
*/
for (int k = 0; k < mod_count; k++) {
if (fluid_mod_has_dest(&mod[k], g))
modval += mod[k].get_value(channel, this);
}
gen[g].set_mod(modval);
/* Update the parameter values that are depend on the generator
* 'gen'
*/
update_param(g);
}
}
/*
* fluid_voice_noteoff
*/
void Voice::noteoff()
{
if (channel && channel->sustained())
status = FLUID_VOICE_SUSTAINED;
else {
if (volenv_section == FLUID_VOICE_ENVATTACK) {
/* A voice is turned off during the attack section of the volume
* envelope. The attack section ramps up linearly with
* amplitude. The other sections use logarithmic scaling. Calculate new
* volenv_val to achieve equievalent amplitude during the release phase
* for seamless volume transition.
*/
if (volenv_val > 0) {
float lfo = modlfo_val * -modlfo_to_vol;
float amp = volenv_val * pow (10.0, lfo / -200);
float env_value = - ((-200 * log (amp) / log (10.0) - lfo) / 960.0 - 1);
fluid_clip (env_value, 0.0, 1.0);
volenv_val = env_value;
}
}
volenv_section = FLUID_VOICE_ENVRELEASE;
volenv_count = 0;
modenv_section = FLUID_VOICE_ENVRELEASE;
modenv_count = 0;
}
}
/*
* fluid_voice_kill_excl
*
* Percussion sounds can be mutually exclusive: for example, a 'closed
* hihat' sound will terminate an 'open hihat' sound ringing at the
* same time. This behaviour is modeled using 'exclusive classes',
* turning on a voice with an exclusive class other than 0 will kill
* all other voices having that exclusive class within the same preset
* or channel. fluid_voice_kill_excl gets called, when 'voice' is to
* be killed for that reason.
*/
void Voice::kill_excl()
{
if (!isPlaying())
return;
/* Turn off the exclusive class information for this voice,
so that it doesn't get killed twice
*/
gen_set(GEN_EXCLUSIVECLASS, 0);
/* If the voice is not yet in release state, put it into release state */
if (volenv_section != FLUID_VOICE_ENVRELEASE) {
volenv_section = FLUID_VOICE_ENVRELEASE;
volenv_count = 0;
modenv_section = FLUID_VOICE_ENVRELEASE;
modenv_count = 0;
}
/* Speed up the volume envelope */
/* The value was found through listening tests with hi-hat samples. */
gen_set(GEN_VOLENVRELEASE, -200);
update_param(GEN_VOLENVRELEASE);
/* Speed up the modulation envelope */
gen_set(GEN_MODENVRELEASE, -200);
update_param(GEN_MODENVRELEASE);
}
//---------------------------------------------------------
// off
// Turns off a voice, meaning that it is not processed
// anymore by the DSP loop.
//---------------------------------------------------------
void Voice::off()
{
chan = NO_CHANNEL;
volenv_section = FLUID_VOICE_ENVFINISHED;
volenv_count = 0;
modenv_section = FLUID_VOICE_ENVFINISHED;
modenv_count = 0;
status = FLUID_VOICE_OFF;
_fluid->freeVoice(this);
}
/*
* fluid_voice_add_mod
*
* Adds a modulator to the voice. "mode" indicates, what to do, if
* an identical modulator exists already.
*
* mode == FLUID_VOICE_ADD: Identical modulators on preset level are added
* mode == FLUID_VOICE_OVERWRITE: Identical modulators on instrument level are overwritten
* mode == FLUID_VOICE_DEFAULT: This is a default modulator, there can be no identical modulator.
* Don't check.
*/
void Voice::add_mod(const Mod* _mod, int mode)
{
/*
* Some soundfonts come with a huge number of non-standard
* controllers, because they have been designed for one particular
* sound card. Discard them, maybe print a warning.
*/
if (((_mod->flags1 & FLUID_MOD_CC) == 0)
&& ((_mod->src1 != 0) /* SF2.01 section 8.2.1: Constant value */
&& (_mod->src1 != 2) /* Note-on velocity */
&& (_mod->src1 != 3) /* Note-on key number */
&& (_mod->src1 != 10) /* Poly pressure */
&& (_mod->src1 != 13) /* Channel pressure */
&& (_mod->src1 != 14) /* Pitch wheel */
&& (_mod->src1 != 16))) { /* Pitch wheel sensitivity */
qDebug("Ignoring invalid controller, using non-CC source %i.", _mod->src1);
return;
}
if (mode == FLUID_VOICE_ADD) {
/* if identical modulator exists, add them */
for (int i = 0; i < mod_count; i++) {
if (test_identity(&mod[i], _mod)) {
// printf("Adding modulator...\n");
mod[i].amount += _mod->amount;
return;
}
}
}
else if (mode == FLUID_VOICE_OVERWRITE) {
/* if identical modulator exists, replace it (only the amount has to be changed) */
for (int i = 0; i < mod_count; i++) {
if (test_identity(&mod[i], _mod)) {
// printf("Replacing modulator...amount is %f\n",mod->amount);
mod[i].amount = _mod->amount;
return;
}
}
}
/* Add a new modulator (No existing modulator to add / overwrite).
Also, default modulators (FLUID_VOICE_DEFAULT) are added without
checking, if the same modulator already exists.
*/
if (mod_count < FLUID_NUM_MOD)
_mod->clone(&mod[mod_count++]);
}
/*
* fluid_voice_get_lower_boundary_for_attenuation
*
* Purpose:
*
* A lower boundary for the attenuation (as in 'the minimum
* attenuation of this voice, with volume pedals, modulators
* etc. resulting in minimum attenuation, cannot fall below x cB) is
* calculated. This has to be called during fluid_voice_init, after
* all modulators have been run on the voice once. Also,
* voice->attenuation has to be initialized.
*/
float Voice::get_lower_boundary_for_attenuation()
{
float possible_att_reduction_cB = 0;
for (int i = 0; i < mod_count; i++) {
Mod* m = &mod[i];
/* Modulator has attenuation as target and can change over time? */
if ((m->dest == GEN_ATTENUATION) && ((m->flags1 & FLUID_MOD_CC) || (m->flags2 & FLUID_MOD_CC))) {
float current_val = m->get_value(channel, this);
float v = fabs(m->amount);
if ((m->src1 == FLUID_MOD_PITCHWHEEL)
|| (m->flags1 & FLUID_MOD_BIPOLAR)
|| (m->flags2 & FLUID_MOD_BIPOLAR)
|| (m->amount < 0)) {
/* Can this modulator produce a negative contribution? */
v *= -1.0;
}
else {
/* No negative value possible. But still, the minimum contribution is 0. */
v = 0;
}
/* For example:
* - current_val=100
* - min_val=-4000
* - possible_att_reduction_cB += 4100
*/
if (current_val > v)
possible_att_reduction_cB += (current_val - v);
}
}
float lower_bound = attenuation - possible_att_reduction_cB;
/* SF2.01 specs do not allow negative attenuation */
if (lower_bound < 0)
lower_bound = 0;
return lower_bound;
}
/* Purpose:
*
* Make sure, that sample start / end point and loop points are in
* proper order. When starting up, calculate the initial phase.
*/
void Voice::check_sample_sanity()
{
int min_index_nonloop=(int) sample->start;
int max_index_nonloop=(int) sample->end;
/* make sure we have enough samples surrounding the loop */
int min_index_loop=(int) sample->start + FLUID_MIN_LOOP_PAD;
int max_index_loop=(int) sample->end - FLUID_MIN_LOOP_PAD;
fluid_check_fpe("voice_check_sample_sanity start");
if (!check_sample_sanity_flag)
return;
#if 0
printf("Sample from %i to %i\n", sample->start, sample->end);
printf("Sample loop from %i %i\n", sample->loopstart, sample->loopend);
printf("Playback from %i to %i\n", start, end);
printf("Playback loop from %i to %i\n", loopstart, loopend);
#endif
/* Keep the start point within the sample data */
if (start < min_index_nonloop)
start = min_index_nonloop;
else if (start > max_index_nonloop)
start = max_index_nonloop;
/* Keep the end point within the sample data */
if (end < min_index_nonloop)
end = min_index_nonloop;
else if (end > max_index_nonloop)
end = max_index_nonloop;
/* Keep start and end point in the right order */
if (start > end) {
int temp = start;
start = end;
end = temp;
}
/* Zero length? */
if (start == end) {
off();
return;
}
if ((SAMPLEMODE() == FLUID_LOOP_UNTIL_RELEASE) || (SAMPLEMODE() == FLUID_LOOP_DURING_RELEASE)) {
/* Keep the loop start point within the sample data */
if (loopstart < min_index_loop)
loopstart = min_index_loop;
else if (loopstart > max_index_loop)
loopstart = max_index_loop;
/* Keep the loop end point within the sample data */
if (loopend < min_index_loop)
loopend = min_index_loop;
else if (loopend > max_index_loop)
loopend = max_index_loop;
/* Keep loop start and end point in the right order */
if (loopstart > loopend){
int temp = loopstart;
loopstart = loopend;
loopend = temp;
}
/* Loop too short? Then don't loop. */
if (loopend < loopstart + FLUID_MIN_LOOP_SIZE)
gen[GEN_SAMPLEMODE].val = FLUID_UNLOOPED;
/* The loop points may have changed. Obtain a new estimate for the loop volume. */
/* Is the voice loop within the sample loop?
*/
if ((int)loopstart >= (int)sample->loopstart && (int)loopend <= (int)sample->loopend){
/* Is there a valid peak amplitude available for the loop? */
if (sample->amplitude_that_reaches_noise_floor_is_valid) {
amplitude_that_reaches_noise_floor_loop = sample->amplitude_that_reaches_noise_floor;
}
else
/* Worst case */
amplitude_that_reaches_noise_floor_loop = amplitude_that_reaches_noise_floor_nonloop;
}
} /* if sample mode is looped */
/* Run startup specific code (only once, when the voice is started) */
if (check_sample_sanity_flag & FLUID_SAMPLESANITY_STARTUP) {
if (max_index_loop - min_index_loop < FLUID_MIN_LOOP_SIZE){
if ((SAMPLEMODE() == FLUID_LOOP_UNTIL_RELEASE) || (SAMPLEMODE() == FLUID_LOOP_DURING_RELEASE))
gen[GEN_SAMPLEMODE].val = FLUID_UNLOOPED;
}
/* Set the initial phase of the voice (using the result from the
start offset modulators).
*/
phase.setInt(start);
} /* if startup */
/* Is this voice run in loop mode, or does it run straight to the
end of the waveform data?
*/
if (((SAMPLEMODE() == FLUID_LOOP_UNTIL_RELEASE) && (volenv_section < FLUID_VOICE_ENVRELEASE)) || (SAMPLEMODE() == FLUID_LOOP_DURING_RELEASE)) {
/* Yes, it will loop as soon as it reaches the loop point. In
* this case we must prevent, that the playback pointer (phase)
* happens to end up beyond the 2nd loop point, because the
* point has moved. The DSP algorithm is unable to cope with
* that situation. So if the phase is beyond the 2nd loop
* point, set it to the start of the loop. No way to avoid some
* noise here. Note: If the sample pointer ends up -before the
* first loop point- instead, then the DSP loop will just play
* the sample, enter the loop and proceed as expected => no
* actions required.
*/
int index_in_sample = phase.index();
if (index_in_sample >= loopend) {
/* FLUID_LOG(FLUID_DBG, "Loop / sample sanity check: Phase after 2nd loop point!"); */
phase.setInt(loopstart);
}
}
/* FLUID_LOG(FLUID_DBG, "Loop / sample sanity check: Sample from %i to %i, loop from %i to %i", voice->start, voice->end, voice->loopstart, voice->loopend); */
/* Sample sanity has been assured. Don't check again, until some
sample parameter is changed by modulation.
*/
check_sample_sanity_flag = 0;
fluid_check_fpe("voice_check_sample_sanity");
}
//---------------------------------------------------------
// set_param
//---------------------------------------------------------
void Voice::set_param(int g, float nrpn_value, int abs)
{
gen[g].nrpn = nrpn_value;
gen[g].flags = (abs)? GEN_ABS_NRPN : GEN_SET;
update_param(g);
}
/** If the peak volume during the loop is known, then the voice can
* be released earlier during the release phase. Otherwise, the
* voice will operate (inaudibly), until the envelope is at the
* nominal turnoff point. In many cases the loop volume is many dB
* below the maximum volume. For example, the loop volume for a
* typical acoustic piano is 20 dB below max. Taking that into
* account in the turn-off algorithm we can save 20 dB / 100 dB =>
* 1/5 of the total release time.
* So it's a good idea to call fluid_voice_optimize_sample
* on each sample once.
*/
/* - Scan the loop
* - determine the peak level
* - Calculate, what factor will make the loop inaudible
* - Store in sample
*/
void Sample::optimize()
{
Sample* s = this;
signed short peak_max = 0;
signed short peak_min = 0;
signed short peak;
float normalized_amplitude_during_loop;
double result;
int i;
/* ignore ROM and other(?) invalid samples */
if (!s->valid())
return;
if (!s->amplitude_that_reaches_noise_floor_is_valid) { /* Only once */
/* Scan the loop */
for (i = (int)s->loopstart; i < (int) s->loopend; i ++) {
signed short val = s->data[i];
if (val > peak_max)
peak_max = val;
else if (val < peak_min)
peak_min = val;
}
/* Determine the peak level */
if (peak_max > -peak_min)
peak = peak_max;
else
peak = -peak_min;
if (peak == 0) /* Avoid division by zero */
peak = 1;
/* Calculate what factor will make the loop inaudible
* For example: Take a peak of 3277 (10 % of 32768). The
* normalized amplitude is 0.1 (10 % of 32768). An amplitude
* factor of 0.0001 (as opposed to the default 0.00001) will
* drop this sample to the noise floor.
*/
/* 16 bits => 96+4=100 dB dynamic range => 0.00001 */
normalized_amplitude_during_loop = ((float)peak)/32768.;
result = FLUID_NOISE_FLOOR / normalized_amplitude_during_loop;
/* Store in sample */
s->amplitude_that_reaches_noise_floor = (double)result;
s->amplitude_that_reaches_noise_floor_is_valid = 1;
}
}
/* Purpose:
*
* - filters (applies a lowpass filter with variable cutoff frequency and quality factor)
* - mixes the processed sample to left and right output using the pan setting
* - sends the processed sample to chorus and reverb
*
* A couple of variables are used internally, their results are discarded:
* - dsp_phase_fractional: The fractional part of dsp_phase
* - dsp_coeff: A table of four coefficients, depending on the fractional phase.
* Used to interpolate between samples.
* - dsp_process_buffer: Holds the processed signal between stages
* - dsp_centernode: delay line for the IIR filter
* - dsp_hist1: same
* - dsp_hist2: same
*
*/
void Voice::effects(int count, float* out, float* reverb, float* chorus)
{
/* filter (implement the voice filter according to SoundFont standard) */
/* Check for denormal number (too close to zero). */
if (fabs (hist1) < 1e-20)
hist1 = 0.0f; /* FIXME JMG - Is this even needed? */
/* Two versions of the filter loop. One, while the filter is
* changing towards its new setting. The other, if the filter
* doesn't change.
*/
if (filter_coeff_incr_count > 0) {
/* Increment is added to each filter coefficient filter_coeff_incr_count times. */
for (int i = 0; i < count; i++) {
/* The filter is implemented in Direct-II form. */
float dsp_centernode = dsp_buf[i] - a1 * hist1 - a2 * hist2;
dsp_buf[i] = b02 * (dsp_centernode + hist2) + b1 * hist1;
hist2 = hist1;
hist1 = dsp_centernode;
if (filter_coeff_incr_count-- > 0) {
a1 += a1_incr;
a2 += a2_incr;
b02 += b02_incr;
b1 += b1_incr;
}
}
}
else { /* The filter parameters are constant. This is duplicated to save time. */
for (int i = 0; i < count; i++) { // The filter is implemented in Direct-II form.
float dsp_centernode = dsp_buf[i] - a1 * hist1 - a2 * hist2;
dsp_buf[i] = b02 * (dsp_centernode + hist2) + b1 * hist1;
hist2 = hist1;
hist1 = dsp_centernode;
}
}
for (int i = 0; i < count; i++) {
float v = dsp_buf[i];
float vv = v * amp_left;
*out++ += vv;
*reverb++ += vv * amp_reverb;
*chorus++ += vv * amp_chorus;
vv = v * amp_right;
*out++ += vv;
*reverb++ += vv * amp_reverb;
*chorus++ += vv * amp_chorus;
}
}
}
|