1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
|
/* FluidSynth - A Software Synthesizer
*
* Copyright (C) 2003 Peter Hanappe and others.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public License
* as published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
* 02111-1307, USA
*/
#include "fluid.h"
#include "voice.h"
#include "sfont.h"
namespace FluidS {
/* Purpose:
*
* Interpolates audio data (obtains values between the samples of the original
* waveform data).
*
* Variables loaded from the voice structure (assigned in fluid_voice_write()):
* - dsp_data: Pointer to the original waveform data
* - dsp_phase: The position in the original waveform data.
* This has an integer and a fractional part (between samples).
* - dsp_phase_incr: For each output sample, the position in the original
* waveform advances by dsp_phase_incr. This also has an integer
* part and a fractional part.
* If a sample is played at root pitch (no pitch change),
* dsp_phase_incr is integer=1 and fractional=0.
* - dsp_amp: The current amplitude envelope value.
* - dsp_amp_incr: The changing rate of the amplitude envelope.
*
* A couple of variables are used internally, their results are discarded:
* - dsp_i: Index through the output buffer
* - dsp_buf: Output buffer of floating point values (FLUID_BUFSIZE in length)
*/
inline bool Voice::updateAmpInc(unsigned int &nextNewAmpInc, std::map<int, qreal>::iterator &curSample2AmpInc, qreal &dsp_amp_incr, unsigned int &dsp_i)
{
if (positionToTurnOff > 0 && dsp_i >= (unsigned int) positionToTurnOff)
return false;
// if volume is zero skip all phases that do not change that!
if (amp == 0.0f) {
while (dsp_amp_incr == 0.0f && curSample2AmpInc != Sample2AmpInc.end()) {
dsp_i = curSample2AmpInc->first;
curSample2AmpInc++;
nextNewAmpInc = curSample2AmpInc->first;
dsp_amp_incr = curSample2AmpInc->second;
}
if (curSample2AmpInc == Sample2AmpInc.end())
return false;
}
if (dsp_i >= nextNewAmpInc) {
curSample2AmpInc++;
nextNewAmpInc = curSample2AmpInc->first;
dsp_amp_incr = curSample2AmpInc->second;
}
return true;
}
/* Interpolation (find a value between two samples of the original waveform) */
/* Linear interpolation table (2 coefficients centered on 1st) */
float Voice::interp_coeff_linear[FLUID_INTERP_MAX][2];
/* 4th order (cubic) interpolation table (4 coefficients centered on 2nd) */
float Voice::interp_coeff[FLUID_INTERP_MAX][4];
/* 7th order interpolation (7 coefficients centered on 3rd) */
float Voice::sinc_table7[FLUID_INTERP_MAX][7];
#define SINC_INTERP_ORDER 7 /* 7th order constant */
//---------------------------------------------------------
// dsp_float_config
// Initializes interpolation tables
//---------------------------------------------------------
void Voice::dsp_float_config()
{
/* Initialize the coefficients for the interpolation. The math comes
* from a mail, posted by Olli Niemitalo to the music-dsp mailing
* list (I found it in the music-dsp archives
* http://www.smartelectronix.com/musicdsp/). */
for (int i = 0; i < FLUID_INTERP_MAX; i++) {
double x = (double) i / (double) FLUID_INTERP_MAX;
interp_coeff[i][0] = (float)(x * (-0.5 + x * (1 - 0.5 * x)));
interp_coeff[i][1] = (float)(1.0 + x * x * (1.5 * x - 2.5));
interp_coeff[i][2] = (float)(x * (0.5 + x * (2.0 - 1.5 * x)));
interp_coeff[i][3] = (float)(0.5 * x * x * (x - 1.0));
interp_coeff_linear[i][0] = (float)(1.0 - x);
interp_coeff_linear[i][1] = (float)x;
}
/* i: Offset in terms of whole samples */
for (int i = 0; i < SINC_INTERP_ORDER; i++) {
/* i2: Offset in terms of fractional samples ('subsamples') */
for (int i2 = 0; i2 < FLUID_INTERP_MAX; i2++) {
/* center on middle of table */
double i_shifted = (double)i - ((double)SINC_INTERP_ORDER / 2.0)
+ (double)i2 / (double)FLUID_INTERP_MAX;
/* sinc(0) cannot be calculated straightforward (limit needed for 0/0) */
double v;
if (fabs (i_shifted) > 0.000001) {
v = (float)sin (i_shifted * M_PI) / (M_PI * i_shifted);
/* Hamming window */
v *= (float)0.5 * (1.0 + cos (2.0 * M_PI * i_shifted / (float)SINC_INTERP_ORDER));
}
else
v = 1.0;
sinc_table7[FLUID_INTERP_MAX - i2 - 1][i] = v;
}
}
fluid_check_fpe("interpolation table calculation");
}
//-------------------------------------------------------------------
// fluid_dsp_float_interpolate_none
// No interpolation. Just take the sample, which is closest to
// the playback pointer. Questionable quality, but very
// efficient.
//-------------------------------------------------------------------
int Voice::dsp_float_interpolate_none(unsigned n)
{
Voice* voice = this;
Phase dsp_phase = voice->phase;
Phase dsp_phase_incr; // end_phase;
short int *dsp_data = voice->sample->data;
auto curSample2AmpInc = Sample2AmpInc.begin();
qreal dsp_amp_incr = curSample2AmpInc->second;
unsigned int nextNewAmpInc = curSample2AmpInc->first;
unsigned int dsp_i = 0;
unsigned int dsp_phase_index;
unsigned int end_index;
int looping;
/* Convert playback "speed" floating point value to phase index/fract */
dsp_phase_incr.setFloat(voice->phase_incr);
/* voice is currently looping? */
looping = SAMPLEMODE() == FLUID_LOOP_DURING_RELEASE
|| (SAMPLEMODE() == FLUID_LOOP_UNTIL_RELEASE
&& voice->volenv_section < FLUID_VOICE_ENVRELEASE);
end_index = looping ? voice->loopend - 1 : voice->end;
while(1) {
dsp_phase_index = dsp_phase.index_round(); // round to nearest point
/* interpolate sequence of sample points */
for ( ; dsp_i < n && dsp_phase_index <= end_index; dsp_i++) {
dsp_buf[dsp_i] = amp * dsp_data[dsp_phase_index];
/* increment phase and amplitude */
dsp_phase += dsp_phase_incr;
dsp_phase_index = dsp_phase.index_round(); /* round to nearest point */
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
/* break out if not looping (buffer may not be full) */
if (!looping)
break;
/* go back to loop start */
if (dsp_phase_index > end_index) {
dsp_phase -= (voice->loopend - voice->loopstart);
voice->has_looped = true;
}
/* break out if filled buffer */
if (dsp_i >= n)
break;
}
voice->phase = dsp_phase;
return dsp_i;
}
//---------------------------------------------------------
// dsp_float_interpolate_linear
// Straight line interpolation.
// Returns number of samples processed (usually FLUID_BUFSIZE but could be
// smaller if end of sample occurs).
//---------------------------------------------------------
int Voice::dsp_float_interpolate_linear(unsigned n)
{
Voice* voice = this;
Phase dsp_phase = voice->phase;
Phase dsp_phase_incr; // end_phase;
short int *dsp_data = voice->sample->data;
auto curSample2AmpInc = Sample2AmpInc.begin();
qreal dsp_amp_incr = curSample2AmpInc->second;
unsigned int nextNewAmpInc = curSample2AmpInc->first;
unsigned int dsp_i = 0;
unsigned int dsp_phase_index;
unsigned int end_index;
short int point;
float *coeffs;
int looping;
/* Convert playback "speed" floating point value to phase index/fract */
dsp_phase_incr.setFloat(voice->phase_incr);
/* voice is currently looping? */
looping = SAMPLEMODE() == FLUID_LOOP_DURING_RELEASE
|| (SAMPLEMODE() == FLUID_LOOP_UNTIL_RELEASE
&& voice->volenv_section < FLUID_VOICE_ENVRELEASE);
/* last index before 2nd interpolation point must be specially handled */
end_index = (looping ? voice->loopend - 1 : voice->end) - 1;
/* 2nd interpolation point to use at end of loop or sample */
if (looping)
point = dsp_data[voice->loopstart]; /* loop start */
else
point = dsp_data[voice->end]; /* duplicate end for samples no longer looping */
while (1) {
dsp_phase_index = dsp_phase.index();
/* interpolate the sequence of sample points */
for ( ; dsp_i < n && dsp_phase_index <= end_index; dsp_i++) {
coeffs = interp_coeff_linear[fluid_phase_fract_to_tablerow (dsp_phase)];
dsp_buf[dsp_i] = amp * (coeffs[0] * dsp_data[dsp_phase_index]
+ coeffs[1] * dsp_data[dsp_phase_index+1]);
/* increment phase and amplitude */
dsp_phase += dsp_phase_incr;
dsp_phase_index = dsp_phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
/* break out if buffer filled */
if (dsp_i >= n)
break;
end_index++; /* we're now interpolating the last point */
/* interpolate within last point */
for (; dsp_phase_index <= end_index && dsp_i < n; dsp_i++) {
coeffs = interp_coeff_linear[fluid_phase_fract_to_tablerow (dsp_phase)];
dsp_buf[dsp_i] = amp * (coeffs[0] * dsp_data[dsp_phase_index]
+ coeffs[1] * point);
/* increment phase and amplitude */
dsp_phase += dsp_phase_incr;
dsp_phase_index = dsp_phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr; /* increment amplitude */
}
if (!looping)
break; /* break out if not looping (end of sample) */
/* go back to loop start (if past */
if (dsp_phase_index > end_index) {
dsp_phase -= (voice->loopend - voice->loopstart);
voice->has_looped = true;
}
/* break out if filled buffer */
if (dsp_i >= n)
break;
end_index--; /* set end back to second to last sample point */
}
voice->phase = dsp_phase;
return dsp_i;
}
//-----------------------------------------------------------------------------
// dsp_float_interpolate_4th_order
// 4th order (cubic) interpolation.
// Returns number of samples processed (usually FLUID_BUFSIZE but could be
// smaller if end of sample occurs).
//-----------------------------------------------------------------------------
int Voice::dsp_float_interpolate_4th_order(unsigned n)
{
Phase dsp_phase_incr; // end_phase;
short int* dsp_data = sample->data;
auto curSample2AmpInc = Sample2AmpInc.begin();
qreal dsp_amp_incr = curSample2AmpInc->second;
unsigned int nextNewAmpInc = curSample2AmpInc->first;
unsigned int dsp_i = 0;
unsigned int dsp_phase_index;
unsigned int start_index;
short int start_point, end_point1, end_point2;
float *coeffs;
/* Convert playback "speed" floating point value to phase index/fract */
dsp_phase_incr.setFloat(phase_incr);
/* voice is currently looping? */
int looping = SAMPLEMODE() == FLUID_LOOP_DURING_RELEASE
|| (SAMPLEMODE() == FLUID_LOOP_UNTIL_RELEASE
&& volenv_section < FLUID_VOICE_ENVRELEASE);
/* last index before 4th interpolation point must be specially handled */
unsigned int end_index = (looping ? loopend - 1 : end) - 2;
if (has_looped) { /* set start_index and start point if looped or not */
start_index = loopstart;
start_point = dsp_data[loopend - 1]; /* last point in loop (wrap around) */
}
else {
start_index = start;
start_point = dsp_data[start]; /* just duplicate the point */
}
/* get points off the end (loop start if looping, duplicate point if end) */
if (looping) {
end_point1 = dsp_data[loopstart];
end_point2 = dsp_data[loopstart + 1];
}
else {
end_point1 = dsp_data[end];
end_point2 = end_point1;
}
while (1) {
dsp_phase_index = phase.index();
/* interpolate first sample point (start or loop start) if needed */
for ( ; dsp_phase_index == start_index && dsp_i < n; dsp_i++) {
coeffs = interp_coeff[fluid_phase_fract_to_tablerow (phase)];
auto val = amp * (coeffs[0] * start_point
+ coeffs[1] * dsp_data[dsp_phase_index]
+ coeffs[2] * dsp_data[dsp_phase_index+1]
+ coeffs[3] * dsp_data[dsp_phase_index+2]);
dsp_buf[dsp_i] = val;
/* increment phase and amplitude */
phase += dsp_phase_incr;
dsp_phase_index = phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
/* interpolate the sequence of sample points */
for ( ; dsp_i < n && dsp_phase_index <= end_index; dsp_i++) {
coeffs = interp_coeff[fluid_phase_fract_to_tablerow (phase)];
auto val = amp * (coeffs[0] * dsp_data[dsp_phase_index-1]
+ coeffs[1] * dsp_data[dsp_phase_index]
+ coeffs[2] * dsp_data[dsp_phase_index+1]
+ coeffs[3] * dsp_data[dsp_phase_index+2]);
dsp_buf[dsp_i] = val;
/* increment phase and amplitude */
phase += dsp_phase_incr;
dsp_phase_index = phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
/* break out if buffer filled */
if (dsp_i >= n)
break;
end_index++; /* we're now interpolating the 2nd to last point */
/* interpolate within 2nd to last point */
for (; dsp_phase_index <= end_index && dsp_i < n; dsp_i++) {
coeffs = interp_coeff[fluid_phase_fract_to_tablerow (phase)];
auto val = amp * (coeffs[0] * dsp_data[dsp_phase_index-1]
+ coeffs[1] * dsp_data[dsp_phase_index]
+ coeffs[2] * dsp_data[dsp_phase_index+1]
+ coeffs[3] * end_point1);
dsp_buf[dsp_i] = val;
/* increment phase and amplitude */
phase += dsp_phase_incr;
dsp_phase_index = phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
end_index++; /* we're now interpolating the last point */
/* interpolate within the last point */
for (; dsp_phase_index <= end_index && dsp_i < n; dsp_i++) {
coeffs = interp_coeff[fluid_phase_fract_to_tablerow (phase)];
auto val = amp * (coeffs[0] * dsp_data[dsp_phase_index-1]
+ coeffs[1] * dsp_data[dsp_phase_index]
+ coeffs[2] * end_point1
+ coeffs[3] * end_point2);
dsp_buf[dsp_i] = val;
/* increment phase and amplitude */
phase += dsp_phase_incr;
dsp_phase_index = phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
if (!looping)
break; /* break out if not looping (end of sample) */
/* go back to loop start */
if (dsp_phase_index > end_index) {
phase -= (loopend - loopstart);
if (!has_looped) {
has_looped = true;
start_index = loopstart;
start_point = dsp_data[loopend - 1];
}
}
/* break out if filled buffer */
if (dsp_i >= n)
break;
end_index -= 2; /* set end back to third to last sample point */
}
return dsp_i;
}
//-----------------------------------------------------------------------------
// dsp_float_interpolate_7th_order
// 7th order interpolation.
// Returns number of samples processed (usually FLUID_BUFSIZE but could be
// smaller if end of sample occurs).
//-----------------------------------------------------------------------------
int Voice::dsp_float_interpolate_7th_order(unsigned n)
{
Voice* voice = this;
Phase dsp_phase = voice->phase;
Phase dsp_phase_incr; // end_phase;
short int *dsp_data = voice->sample->data;
auto curSample2AmpInc = Sample2AmpInc.begin();
qreal dsp_amp_incr = curSample2AmpInc->second;
unsigned int nextNewAmpInc = curSample2AmpInc->first;
unsigned int dsp_i = 0;
unsigned int dsp_phase_index;
unsigned int start_index, end_index;
short int start_points[3];
short int end_points[3];
float *coeffs;
int looping;
/* Convert playback "speed" floating point value to phase index/fract */
dsp_phase_incr.setFloat(voice->phase_incr);
/* add 1/2 sample to dsp_phase since 7th order interpolation is centered on
* the 4th sample point */
dsp_phase += (Phase)0x80000000;
/* voice is currently looping? */
looping = SAMPLEMODE() == FLUID_LOOP_DURING_RELEASE
|| (SAMPLEMODE() == FLUID_LOOP_UNTIL_RELEASE
&& voice->volenv_section < FLUID_VOICE_ENVRELEASE);
/* last index before 7th interpolation point must be specially handled */
end_index = (looping ? voice->loopend - 1 : voice->end) - 3;
if (voice->has_looped) { /* set start_index and start point if looped or not */
start_index = voice->loopstart;
start_points[0] = dsp_data[voice->loopend - 1];
start_points[1] = dsp_data[voice->loopend - 2];
start_points[2] = dsp_data[voice->loopend - 3];
}
else {
start_index = voice->start;
start_points[0] = dsp_data[voice->start]; /* just duplicate the start point */
start_points[1] = start_points[0];
start_points[2] = start_points[0];
}
/* get the 3 points off the end (loop start if looping, duplicate point if end) */
if (looping) {
end_points[0] = dsp_data[voice->loopstart];
end_points[1] = dsp_data[voice->loopstart + 1];
end_points[2] = dsp_data[voice->loopstart + 2];
}
else {
end_points[0] = dsp_data[voice->end];
end_points[1] = end_points[0];
end_points[2] = end_points[0];
}
while (1) {
dsp_phase_index = dsp_phase.index();
/* interpolate first sample point (start or loop start) if needed */
for ( ; dsp_phase_index == start_index && dsp_i < n; dsp_i++) {
coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];
dsp_buf[dsp_i] = amp * (coeffs[0] * (float)start_points[2]
+ coeffs[1] * (float)start_points[1]
+ coeffs[2] * (float)start_points[0]
+ coeffs[3] * (float)dsp_data[dsp_phase_index]
+ coeffs[4] * (float)dsp_data[dsp_phase_index+1]
+ coeffs[5] * (float)dsp_data[dsp_phase_index+2]
+ coeffs[6] * (float)dsp_data[dsp_phase_index+3]);
/* increment phase and amplitude */
dsp_phase += dsp_phase_incr;
dsp_phase_index = dsp_phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
start_index++;
/* interpolate 2nd to first sample point (start or loop start) if needed */
for ( ; dsp_phase_index == start_index && dsp_i < n; dsp_i++) {
coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];
dsp_buf[dsp_i] = amp * (coeffs[0] * (float)start_points[1]
+ coeffs[1] * (float)start_points[0]
+ coeffs[2] * (float)dsp_data[dsp_phase_index-1]
+ coeffs[3] * (float)dsp_data[dsp_phase_index]
+ coeffs[4] * (float)dsp_data[dsp_phase_index+1]
+ coeffs[5] * (float)dsp_data[dsp_phase_index+2]
+ coeffs[6] * (float)dsp_data[dsp_phase_index+3]);
/* increment phase and amplitude */
dsp_phase += dsp_phase_incr;
dsp_phase_index = dsp_phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
start_index++;
/* interpolate 3rd to first sample point (start or loop start) if needed */
for ( ; dsp_phase_index == start_index && dsp_i < n; dsp_i++) {
coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];
dsp_buf[dsp_i] = amp * (coeffs[0] * (float)start_points[0]
+ coeffs[1] * (float)dsp_data[dsp_phase_index-2]
+ coeffs[2] * (float)dsp_data[dsp_phase_index-1]
+ coeffs[3] * (float)dsp_data[dsp_phase_index]
+ coeffs[4] * (float)dsp_data[dsp_phase_index+1]
+ coeffs[5] * (float)dsp_data[dsp_phase_index+2]
+ coeffs[6] * (float)dsp_data[dsp_phase_index+3]);
/* increment phase and amplitude */
dsp_phase += dsp_phase_incr;
dsp_phase_index = dsp_phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
start_index -= 2; /* set back to original start index */
/* interpolate the sequence of sample points */
for ( ; dsp_i < n && dsp_phase_index <= end_index; dsp_i++) {
coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];
dsp_buf[dsp_i] = amp * (coeffs[0] * (float)dsp_data[dsp_phase_index-3]
+ coeffs[1] * (float)dsp_data[dsp_phase_index-2]
+ coeffs[2] * (float)dsp_data[dsp_phase_index-1]
+ coeffs[3] * (float)dsp_data[dsp_phase_index]
+ coeffs[4] * (float)dsp_data[dsp_phase_index+1]
+ coeffs[5] * (float)dsp_data[dsp_phase_index+2]
+ coeffs[6] * (float)dsp_data[dsp_phase_index+3]);
/* increment phase and amplitude */
dsp_phase += dsp_phase_incr;
dsp_phase_index = dsp_phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
/* break out if buffer filled */
if (dsp_i >= n)
break;
end_index++; /* we're now interpolating the 3rd to last point */
/* interpolate within 3rd to last point */
for (; dsp_phase_index <= end_index && dsp_i < n; dsp_i++) {
coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];
dsp_buf[dsp_i] = amp * (coeffs[0] * (float)dsp_data[dsp_phase_index-3]
+ coeffs[1] * (float)dsp_data[dsp_phase_index-2]
+ coeffs[2] * (float)dsp_data[dsp_phase_index-1]
+ coeffs[3] * (float)dsp_data[dsp_phase_index]
+ coeffs[4] * (float)dsp_data[dsp_phase_index+1]
+ coeffs[5] * (float)dsp_data[dsp_phase_index+2]
+ coeffs[6] * (float)end_points[0]);
/* increment phase and amplitude */
dsp_phase += dsp_phase_incr;
dsp_phase_index = dsp_phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
end_index++; /* we're now interpolating the 2nd to last point */
/* interpolate within 2nd to last point */
for (; dsp_phase_index <= end_index && dsp_i < n; dsp_i++) {
coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];
dsp_buf[dsp_i] = amp * (coeffs[0] * (float)dsp_data[dsp_phase_index-3]
+ coeffs[1] * (float)dsp_data[dsp_phase_index-2]
+ coeffs[2] * (float)dsp_data[dsp_phase_index-1]
+ coeffs[3] * (float)dsp_data[dsp_phase_index]
+ coeffs[4] * (float)dsp_data[dsp_phase_index+1]
+ coeffs[5] * (float)end_points[0]
+ coeffs[6] * (float)end_points[1]);
/* increment phase and amplitude */
dsp_phase += dsp_phase_incr;
dsp_phase_index = dsp_phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
end_index++; /* we're now interpolating the last point */
/* interpolate within last point */
for (; dsp_phase_index <= end_index && dsp_i < n; dsp_i++) {
coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];
dsp_buf[dsp_i] = amp * (coeffs[0] * (float)dsp_data[dsp_phase_index-3]
+ coeffs[1] * (float)dsp_data[dsp_phase_index-2]
+ coeffs[2] * (float)dsp_data[dsp_phase_index-1]
+ coeffs[3] * (float)dsp_data[dsp_phase_index]
+ coeffs[4] * (float)end_points[0]
+ coeffs[5] * (float)end_points[1]
+ coeffs[6] * (float)end_points[2]);
/* increment phase and amplitude */
dsp_phase += dsp_phase_incr;
dsp_phase_index = dsp_phase.index();
if (!updateAmpInc(nextNewAmpInc, curSample2AmpInc, dsp_amp_incr, dsp_i))
return dsp_i;
amp += dsp_amp_incr;
}
if (!looping)
break; /* break out if not looping (end of sample) */
/* go back to loop start */
if (dsp_phase_index > end_index) {
dsp_phase -= (voice->loopend - voice->loopstart);
if (!voice->has_looped) {
voice->has_looped = true;
start_index = voice->loopstart;
start_points[0] = dsp_data[voice->loopend - 1];
start_points[1] = dsp_data[voice->loopend - 2];
start_points[2] = dsp_data[voice->loopend - 3];
}
}
/* break out if filled buffer */
if (dsp_i >= n)
break;
end_index -= 3; /* set end back to 4th to last sample point */
}
/* sub 1/2 sample from dsp_phase since 7th order interpolation is centered on
* the 4th sample point (correct back to real value) */
dsp_phase -= (Phase)0x80000000;
voice->phase = dsp_phase;
return dsp_i;
}
}
|