File: importmidi_tuplet_voice.cpp

package info (click to toggle)
musescore2 2.3.2%2Bdfsg4-16
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 170,464 kB
  • sloc: cpp: 262,612; xml: 176,707; sh: 3,377; ansic: 1,246; python: 356; makefile: 227; perl: 82; pascal: 78
file content (885 lines) | stat: -rw-r--r-- 38,189 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
#include "importmidi_tuplet_voice.h"
#include "importmidi_tuplet.h"
#include "importmidi_chord.h"
#include "importmidi_quant.h"
#include "importmidi_inner.h"
#include "importmidi_voice.h"
#include "importmidi_operations.h"
#include "libmscore/mscore.h"
#include "mscore/preferences.h"

#include <set>


namespace Ms {
namespace MidiTuplet {

int tupletVoiceLimit()
      {
      const auto &opers = preferences.midiImportOperations.data()->trackOpers;
      const int currentTrack = preferences.midiImportOperations.currentTrack();
      const int allowedVoices = MidiVoice::toIntVoiceCount(opers.maxVoiceCount.value(currentTrack));

      Q_ASSERT_X(allowedVoices <= VOICES,
                 "MidiTuplet::tupletVoiceLimit",
                 "Allowed voice count exceeds MuseScore voice limit");

                  // for multiple voices: one voice is reserved for non-tuplet chords
      return (allowedVoices == 1) ? 1 : allowedVoices - 1;
      }

std::pair<ReducedFraction, ReducedFraction>
chordInterval(const std::pair<const ReducedFraction, MidiChord> &chord,
              const std::multimap<ReducedFraction, MidiChord> &chords,
              const ReducedFraction &basicQuant,
              const ReducedFraction &barStart)
      {
      const auto onTime = MidiTuplet::findOnTimeBetweenChords(chord, chords, basicQuant, barStart);
      auto offTime = Quantize::findMaxQuantizedOffTime(chord, basicQuant);
      if (offTime < onTime)
            offTime = onTime;
      if (offTime == onTime)
            offTime += Quantize::quantForLen(MChord::minNoteLen(chord), basicQuant);

      Q_ASSERT_X(offTime > onTime, "MidiTuplet::chordInterval", "Off time <= On time");

      return std::make_pair(onTime, offTime);
      }

int findTupletWithChord(const MidiChord &midiChord,
                        const std::vector<TupletInfo> &tuplets)
      {
      for (int i = 0; i != (int)tuplets.size(); ++i) {
            for (const auto &chord: tuplets[i].chords) {
                  if (&(chord.second->second) == &midiChord)
                        return i;
                  }
            }
      return -1;
      }

std::pair<ReducedFraction, ReducedFraction>
backTiedInterval(const TiedTuplet &tiedTuplet,
                 const std::vector<TupletInfo> &tuplets,
                 const std::multimap<ReducedFraction, MidiChord> &chords,
                 const ReducedFraction &basicQuant,
                 const ReducedFraction &barStart)
      {
      const TupletInfo &tuplet = tupletFromId(tiedTuplet.tupletId, tuplets);
      const auto end = tupletInterval(tuplet, basicQuant).second;
      const MidiChord &midiChord = tiedTuplet.chord->second;

      const int tupletIndex = findTupletWithChord(midiChord, tuplets);
      const auto beg = (tupletIndex != -1)
                  ? tupletInterval(tuplets[tupletIndex], basicQuant).first
                  : chordInterval(*tiedTuplet.chord, chords, basicQuant, barStart).first;

      return std::make_pair(beg, end);
      }

void setTupletVoice(
            std::map<ReducedFraction,
                     std::multimap<ReducedFraction, MidiChord>::iterator> &tupletChords,
            int voice)
      {
      for (auto &tupletChord: tupletChords) {
            MidiChord &midiChord = tupletChord.second->second;
            midiChord.voice = voice;
            }
      }

void setTupletVoices(
            std::vector<TupletInfo> &tuplets,
            std::set<int> &pendingTuplets,
            std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &tupletIntervals,
            const ReducedFraction &basicQuant)
      {
      const int limit = tupletVoiceLimit();
      int voice = 0;
      while (!pendingTuplets.empty() && voice < limit) {
            for (auto it = pendingTuplets.begin(); it != pendingTuplets.end(); ) {
                  TupletInfo &tuplet = tupletFromId(*it, tuplets);
                  const auto interval = tupletInterval(tuplet, basicQuant);
                  if (!haveIntersection(interval, tupletIntervals[voice])) {
                        setTupletVoice(tuplet.chords, voice);
                        tupletIntervals[voice].push_back(interval);
                        it = pendingTuplets.erase(it);
                        continue;
                        }
                  ++it;
                  }
            ++voice;
            }
      }

int findPitchDist(
            const QList<MidiNote> &notes,
            const std::vector<TupletInfo> &tuplets,
            int voice)
      {
      int pitchDist = std::numeric_limits<int>::max();      // bad value - only for the last choice
      if (tuplets.empty())
            return pitchDist;

      int tupletPitch = 0;
      for (const auto &tuplet: tuplets) {
            if (tuplet.chords.begin()->second->second.voice != voice)
                  continue;
            int counter = 0;
            for (const auto &chord: tuplet.chords) {
                  const MidiChord &c = chord.second->second;
                  tupletPitch += MChord::chordAveragePitch(c.notes);
                  ++counter;
                  }
            tupletPitch = qRound(tupletPitch * 1.0 / counter);
            break;
            }

      if (tupletPitch == 0)
            return pitchDist;

      const int chordPitch = MChord::chordAveragePitch(notes);
      pitchDist = qAbs(chordPitch - tupletPitch);

      return pitchDist;
      }

void setNonTupletVoices(
            std::set<std::pair<const ReducedFraction, MidiChord> *> &pendingNonTuplets,
            const std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &tupletIntervals,
            const std::vector<TupletInfo> &tuplets,
            const std::multimap<ReducedFraction, MidiChord> &chords,
            const ReducedFraction &basicQuant,
            const ReducedFraction &barStart)
      {
      const int limit = MidiVoice::voiceLimit();
      while (!pendingNonTuplets.empty()) {
            auto chord = *pendingNonTuplets.begin();
            const auto interval = chordInterval(*chord, chords, basicQuant, barStart);
                        // pick the voice such that the average pitch difference
                        // between the non-tuplet chord and tuplets with this voice
                        // is the smallest
            int bestVoice = -1;
            int minPitchDist = -1;
            for (int voice = 0; voice < limit; ++voice) {
                  const auto fit = tupletIntervals.find(voice);
                  if (fit == tupletIntervals.end() || !haveIntersection(interval, fit->second)) {
                        const int pitchDist = findPitchDist(chord->second.notes, tuplets, voice);
                        if (minPitchDist == -1 || pitchDist < minPitchDist) {
                              minPitchDist = pitchDist;
                              bestVoice = voice;
                              }
                        }
                  }

            Q_ASSERT_X(bestVoice >= 0,
                       "MidiTuplet::setNonTupletVoices", "Best voice not found");

            chord->second.voice = bestVoice;
            pendingNonTuplets.erase(pendingNonTuplets.begin());
            // don't insert chord interval here
            }
      }


#ifdef IMPORTMIDI_DEBUG

bool areAllElementsUnique(
            const std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets)
      {
      std::set<std::pair<const ReducedFraction, MidiChord> *> chords;
      for (const auto &chord: nonTuplets) {
            if (chords.find(&*chord) == chords.end())
                  chords.insert(&*chord);
            else
                  return false;
            }
      return true;
      }

bool haveTupletsEmptyChords(const std::vector<TupletInfo> &tuplets)
      {
      for (const auto &tuplet: tuplets) {
            if (tuplet.chords.empty())
                  return true;
            }
      return false;
      }

bool doTupletChordsHaveSameVoice(const std::vector<TupletInfo> &tuplets)
      {
      for (const auto &tuplet: tuplets) {
            auto it = tuplet.chords.cbegin();
            const int voice = it->second->second.voice;
            ++it;
            for ( ; it != tuplet.chords.cend(); ++it) {
                  if (it->second->second.voice != voice)
                        return false;
                  }
            }
      return true;
      }

// back tied tuplets are not checked here

bool haveOverlappingVoices(
            const std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets,
            const std::vector<TupletInfo> &tuplets,
            const std::list<TiedTuplet> &backTiedTuplets,
            const std::multimap<ReducedFraction, MidiChord> &chords,
            const ReducedFraction &basicQuant,
            const ReducedFraction &barStart)
      {
                  // <voice, intervals>
      std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> intervals;

      for (const auto &tuplet: tuplets) {
            const int voice = tuplet.chords.begin()->second->second.voice;
            const auto interval = std::make_pair(tuplet.onTime, tuplet.onTime + tuplet.len);
            if (haveIntersection(interval, intervals[voice]))
                  return true;
            else
                  intervals[voice].push_back(interval);
            }

      for (const auto &chord: nonTuplets) {
            const int voice = chord->second.voice;
            const auto interval = chordInterval(*chord, chords, basicQuant, barStart);
            if (haveIntersection(interval, intervals[voice])) {
                  bool flag = false;
                              // if chord is tied then it can intersect tuplet
                  for (const TiedTuplet &tiedTuplet: backTiedTuplets) {
                        if (tiedTuplet.chord == (&*chord)
                                    && (tiedTuplet.voice == -1 || tiedTuplet.voice == voice)) {
                              flag = true;
                              break;
                              }
                        }
                  if (!flag)
                        return true;
                  }
            }

      return false;
      }

size_t chordCount(
            const std::vector<TupletInfo> &tuplets,
            const std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets)
      {
      size_t sum = nonTuplets.size();
      for (const auto &tuplet: tuplets) {
            sum += tuplet.chords.size();
            }
      return sum;
      }

bool voiceDontExceedLimit(
            const std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets,
            const std::vector<TupletInfo> &tuplets)
      {
      for (const auto &tuplet: tuplets) {
            const int voice = tuplet.chords.begin()->second->second.voice;
            if (voice >= MidiVoice::voiceLimit())
                  return true;
            }

      for (const auto &chord: nonTuplets) {
            const int voice = chord->second.voice;
            if (voice >= MidiVoice::voiceLimit())
                  return true;
            }

      return false;
      }

#endif


void eraseBackTiedTuplet(
            int tupletId,
            std::list<TiedTuplet> &backTiedTuplets)
      {
      for (auto it = backTiedTuplets.begin(); it != backTiedTuplets.end(); ++it) {
            if (it->tupletId == tupletId) {
                  backTiedTuplets.erase(it);
                  break;
                  }
            }
      }

// for the case when voice limit = 1

bool excludeExtraVoiceTuplets(
            std::vector<TupletInfo> &tuplets,
            std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets,
            std::list<TiedTuplet> &backTiedTuplets,
            const std::multimap<ReducedFraction, MidiChord> &chords,
            const ReducedFraction &basicQuant,
            const ReducedFraction &barStart,
            int barIndex)
      {
      size_t sz = tuplets.size();
      if (sz == 0)
            return false;

      std::list<std::multimap<ReducedFraction, MidiChord>::iterator> newNonTuplets;
      size_t addedCount = nonTuplets.size();
      while (addedCount > 0) {
            nonTuplets.splice(nonTuplets.begin(), newNonTuplets);
                        // remove tuplets that are overlapped with non-tuplets
            for (size_t i = 0; i < sz; ) {
                  const auto interval = tupletInterval(tuplets[i], basicQuant);
                  bool shift = false;
                  size_t counter = 0;
                  for (const auto &nonTuplet: nonTuplets) {
                        ++counter;
                        if (counter > addedCount)
                              break;
                        if (haveIntersection(interval, chordInterval(*nonTuplet, chords,
                                                                     basicQuant, barStart))) {
                              bool isTied = false;
                              for (const TiedTuplet &tiedTuplet: backTiedTuplets) {
                                    if (tiedTuplet.tupletId == tuplets[i].id
                                                && tiedTuplet.chord == &*nonTuplet) {
                                          isTied = true;
                                          break;
                                          }
                                    }
                              if (!isTied) {
                                    for (const auto &chord: tuplets[i].chords) {
                                          if (chord.second->second.barIndex == barIndex)
                                                newNonTuplets.push_back(chord.second);
                                          }
                                    eraseBackTiedTuplet(tuplets[i].id, backTiedTuplets);
                                    --sz;
                                    if (i < sz) {
                                          shift = true;
                                          tuplets[i] = tuplets[sz];
                                          }
                                    break;
                                    }
                              }
                        }
                  if (shift)
                        continue;
                  ++i;
                  }
            addedCount = newNonTuplets.size();
            }

      Q_ASSERT_X(areAllElementsUnique(nonTuplets),
                 "MidiTuplet::excludeExtraVoiceTuplets", "Non unique chords in non-tuplets");

      bool excluded = (sz != tuplets.size());
      tuplets.resize(sz);

      return excluded;
      }

void removeUnusedTuplets(
            std::vector<TupletInfo> &tuplets,
            std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets,
            std::set<int> &pendingTuplets,
            std::list<TiedTuplet> &backTiedTuplets,
            std::set<std::pair<const ReducedFraction, MidiChord> *> &pendingNonTuplets,
            int barIndex)
      {
      if (pendingTuplets.empty())
            return;

      std::vector<TupletInfo> newTuplets;
      for (int i = 0; i != (int)tuplets.size(); ++i) {
            if (pendingTuplets.find(tuplets[i].id) == pendingTuplets.end()) {
                  newTuplets.push_back(tuplets[i]);
                  }
            else {
                  eraseBackTiedTuplet(tuplets[i].id, backTiedTuplets);
                  for (const auto &chord: tuplets[i].chords) {
                        if (chord.second->second.barIndex == barIndex) {
                              nonTuplets.push_back(chord.second);
                              pendingNonTuplets.insert(&*chord.second);
                              }
                        }
                  }
            }
      pendingTuplets.clear();
      std::swap(tuplets, newTuplets);
      }

std::set<int> findPendingTuplets(const std::vector<TupletInfo> &tuplets)
      {
      std::set<int> pendingTuplets;       // tuplet indexes
      for (int i = 0; i != (int)tuplets.size(); ++i) {
            pendingTuplets.insert(tuplets[i].id);
            }
      return pendingTuplets;
      }

std::set<std::pair<const ReducedFraction, MidiChord> *>
findPendingNonTuplets(
            const std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets)
      {
      std::set<std::pair<const ReducedFraction, MidiChord> *> pendingNonTuplets;
      for (const auto &c: nonTuplets) {
            pendingNonTuplets.insert(&*c);
            }
      return pendingNonTuplets;
      }

std::list<TiedTuplet>::iterator
eraseBackTiedTuplet(const std::list<TiedTuplet>::iterator &it,
                    std::list<TiedTuplet> &backTiedTuplets,
                    const TupletInfo &tuplet)
      {
      for (const auto &chord: tuplet.chords) {
            for (auto it2 = backTiedTuplets.begin(); it2 != backTiedTuplets.end(); ++it2) {
                  if (&(chord.second->second) == &(it2->chord->second)) {
                        backTiedTuplets.erase(it2);
                        break;
                        }
                  }
            }

      return backTiedTuplets.erase(it);
      }

void setVoicesFromPrevBars(
            std::list<TiedTuplet> &backTiedTuplets,
            std::vector<TupletInfo> &tuplets,
            std::set<int> &pendingTuplets,
            const std::set<std::pair<const ReducedFraction, MidiChord> *> &pendingNonTuplets,
            std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &tupletIntervals,
            std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &backTupletIntervals,
            const std::multimap<ReducedFraction, MidiChord> &chords,
            const ReducedFraction &basicQuant,
            const ReducedFraction &barStart)
      {
#ifdef NDEBUG
      (void)pendingNonTuplets;
#endif
      bool loopAgain = false;
      do {
            for (auto it = backTiedTuplets.begin(); it != backTiedTuplets.end(); ) {
                  const TiedTuplet &tiedTuplet = *it;
                  TupletInfo &tuplet = tupletFromId(tiedTuplet.tupletId, tuplets);
                  const auto backInterval = std::make_pair(tuplet.onTime, tuplet.onTime + tuplet.len);

                  if (tiedTuplet.voice == -1) {
                        ++it;
                        continue;
                        }
                  if (haveIntersection(backInterval, backTupletIntervals[tiedTuplet.voice])) {
                        it = backTiedTuplets.erase(it);
                        continue;
                        }

                  for (const auto &chord: tuplet.chords) {
                        for (auto it2 = backTiedTuplets.begin();
                                  it2 != backTiedTuplets.end(); ++it2) {
                              if (it2 == it)
                                    continue;
                              if (&(chord.second->second) == &(it2->chord->second)
                                          && it2->voice == -1) {
                                    it2->voice = tiedTuplet.voice;
                                    loopAgain = true;
                                    break;
                                    }
                              }
                        }

                  setTupletVoice(tuplet.chords, tiedTuplet.voice);
                  backTupletIntervals[tiedTuplet.voice].push_back(backInterval);
                  tupletIntervals[tiedTuplet.voice].push_back(backInterval);
                              // add to intervals chord from previous bar
                  tupletIntervals[tiedTuplet.voice].push_back(
                                    chordInterval(*tiedTuplet.chord, chords, basicQuant, barStart));
                  pendingTuplets.erase(tiedTuplet.tupletId);

                  Q_ASSERT_X(pendingNonTuplets.find(tiedTuplet.chord) == pendingNonTuplets.end(),
                             "MidiTuplet::setBackTiedVoices",
                             "Tied non-tuplet chord should not be here");

                  ++it;
                  }
            } while (loopAgain);
      }

void setTiedChordVoice(
            std::list<TiedTuplet> &backTiedTuplets,
            std::vector<TupletInfo> &tuplets,
            std::set<int> &pendingTuplets,
            std::set<std::pair<const ReducedFraction, MidiChord> *> &pendingNonTuplets,
            std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &tupletIntervals,
            std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &backTupletIntervals,
            const std::multimap<ReducedFraction, MidiChord> &chords,
            const std::list<TiedTuplet>::iterator &backTiedIt,
            bool isNonTupletBackChord,
            const ReducedFraction &basicQuant,
            const ReducedFraction &barStart)
      {
      const TiedTuplet &tiedTuplet = *backTiedIt;

      if (isNonTupletBackChord) {
                        // non-tuplet chord tied
            const auto interval = chordInterval(*tiedTuplet.chord, chords, basicQuant, barStart);
            backTupletIntervals[tiedTuplet.voice].push_back(interval);
            tiedTuplet.chord->second.voice = tiedTuplet.voice;
            if (tupletVoiceLimit() > 1)
                  tupletIntervals[tiedTuplet.voice].push_back(interval);
            pendingNonTuplets.erase(tiedTuplet.chord);
            }
      else {
                        // tuplet tied
            const int i = findTupletWithChord(tiedTuplet.chord->second, tuplets);

            Q_ASSERT_X(i != -1, "MidiTuplet::setBackTiedVoices",
                       "Tuplet chord not found in tuplets");

            auto it2 = std::next(backTiedIt);
            for ( ; it2 != backTiedTuplets.end(); ++it2) {
                  if (it2->tupletId == tuplets[i].id)
                        break;
                  }
            if (it2 != backTiedTuplets.end()) {
                  if (it2->voice == -1)
                        it2->voice = tiedTuplet.voice;
                  }
            else {
                              // set voice of not back-tied tuplet that have tied chord
                  setTupletVoice(tuplets[i].chords, tiedTuplet.voice);
                  const auto interval = tupletInterval(tuplets[i], basicQuant);
                  tupletIntervals[tiedTuplet.voice].push_back(interval);
                  backTupletIntervals[tiedTuplet.voice].push_back(interval);
                  pendingTuplets.erase(tuplets[i].id);
                  }
            }
      }

void setVoiceOfConnectedBackTied(
            std::list<TiedTuplet> &backTiedTuplets,
            int tiedTupletVoice,
            const std::set<int> &pendingTuplets,
            const TupletInfo &tuplet,
            const std::list<TiedTuplet>::iterator &backTiedIt)
      {
      for (const auto &chord: tuplet.chords) {
            for (auto it2 = std::next(backTiedIt); it2 != backTiedTuplets.end(); ++it2) {
                  if (pendingTuplets.find(it2->tupletId) == pendingTuplets.end())
                        continue;
                  if (&(chord.second->second) == &(it2->chord->second) && it2->voice == -1) {
                        it2->voice = tiedTupletVoice;
                        break;
                        }
                  }
            }
      }

int findVoiceForBackTied(
            const std::pair<const ReducedFraction, MidiChord> &tiedTupletChord,
            int voiceLimit,
            const std::pair<ReducedFraction, ReducedFraction> &backInterval,
            std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &backTupletIntervals,
            const std::multimap<ReducedFraction, MidiChord> &chords,
            bool isNonTupletBackChord,
            const ReducedFraction &basicQuant,
            const ReducedFraction &barStart)
      {
      int voice = 0;
      for ( ; voice != voiceLimit; ++voice) {
            if (haveIntersection(backInterval, backTupletIntervals[voice])
                        || (isNonTupletBackChord && haveIntersection(
                                  chordInterval(tiedTupletChord, chords, basicQuant, barStart),
                                                backTupletIntervals[voice]))) {
                  continue;
                  }
            break;
            }

      return voice;
      }

std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction> > >
findBackTupletIntervals(
            const std::list<TiedTuplet> &backTiedTuplets,
            const std::vector<TupletInfo> &tuplets)
      {
      std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> backTupletIntervals;
      for (const auto &t: backTiedTuplets) {
            const auto &tuplet = tupletFromId(t.tupletId, tuplets);
            const auto interval = std::make_pair(tuplet.onTime, tuplet.onTime + tuplet.len);
            backTupletIntervals[t.voice].push_back(interval);
            }
      return backTupletIntervals;
      }

void setBackTiedVoices(
            std::list<TiedTuplet> &backTiedTuplets,
            std::vector<TupletInfo> &tuplets,
            std::set<int> &pendingTuplets,
            std::set<std::pair<const ReducedFraction, MidiChord> *> &pendingNonTuplets,
            std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &tupletIntervals,
            const std::multimap<ReducedFraction, MidiChord> &chords,
            const ReducedFraction &basicQuant,
            const ReducedFraction &barStart)
      {
      auto backTupletIntervals = findBackTupletIntervals(backTiedTuplets, tuplets);

                  // set voices that are already set from one of previous bars
      setVoicesFromPrevBars(backTiedTuplets, tuplets, pendingTuplets, pendingNonTuplets,
                            tupletIntervals, backTupletIntervals, chords, basicQuant, barStart);

                  // set yet unset back tied voices
      const int limit = tupletVoiceLimit();

      for (auto it = backTiedTuplets.begin(); it != backTiedTuplets.end(); ) {
            TiedTuplet &tiedTuplet = *it;
            if (pendingTuplets.find(tiedTuplet.tupletId) == pendingTuplets.end()) {
                  ++it;
                  continue;
                  }

            TupletInfo &tuplet = tupletFromId(tiedTuplet.tupletId, tuplets);
            const auto backInterval = std::make_pair(tuplet.onTime, tuplet.onTime + tuplet.len);
            bool isNonTupletBackChord
                        = (pendingNonTuplets.find(tiedTuplet.chord) != pendingNonTuplets.end());

            if (tiedTuplet.voice == -1) {
                  const int voice = findVoiceForBackTied(
                                    *tiedTuplet.chord, limit, backInterval, backTupletIntervals,
                                    chords, isNonTupletBackChord, basicQuant, barStart);
                  if (voice < limit) {
                        tiedTuplet.voice = voice;
                        }
                  else {    // no available voices
                        it = eraseBackTiedTuplet(it, backTiedTuplets, tuplet);
                        continue;
                        }
                  }
            else {
                  if (haveIntersection(backInterval, backTupletIntervals[tiedTuplet.voice])
                              || (isNonTupletBackChord
                                  && haveIntersection(chordInterval(*tiedTuplet.chord, chords,
                                                                    basicQuant, barStart),
                                                      backTupletIntervals[tiedTuplet.voice]))) {
                        it = eraseBackTiedTuplet(it, backTiedTuplets, tuplet);
                        continue;
                        }
                  }

            setVoiceOfConnectedBackTied(backTiedTuplets, tiedTuplet.voice,
                                        pendingTuplets, tuplet, it);

                        // set voices of tied tuplet chords
            setTupletVoice(tuplet.chords, tiedTuplet.voice);
            backTupletIntervals[tiedTuplet.voice].push_back(backInterval);
            tupletIntervals[tiedTuplet.voice].push_back(tupletInterval(tuplet, basicQuant));
            pendingTuplets.erase(tiedTuplet.tupletId);

            setTiedChordVoice(backTiedTuplets, tuplets, pendingTuplets, pendingNonTuplets,
                              tupletIntervals, backTupletIntervals, chords, it,
                              isNonTupletBackChord, basicQuant, barStart);
            ++it;
            }
      }

std::map<std::pair<const ReducedFraction, MidiChord> *, int>
findMappedTupletChords(const std::vector<TupletInfo> &tuplets)
      {
                  // <chord address, tupletIndex>
      std::map<std::pair<const ReducedFraction, MidiChord> *, int> tupletChords;
      for (int i = 0; i != (int)tuplets.size(); ++i) {
            for (const auto &tupletChord: tuplets[i].chords) {
                  auto tupletIt = tupletChord.second;
                  tupletChords.insert({&*tupletIt, i});
                  }
            }
      return tupletChords;
      }

bool areTupletsIntersect(const TupletInfo &t1, const TupletInfo &t2)
      {
      const auto onTime1 = t1.onTime;
      const auto endTime1 = onTime1 + t1.len;
      const auto onTime2 = t2.onTime;
      const auto endTime2 = onTime1 + t2.len;
      return (endTime1 > onTime2 && onTime1 < endTime2);
      }

// result: tied notes indexes

std::vector<int> findTiedNotes(
            const TupletInfo &tuplet,
            const std::multimap<ReducedFraction, MidiChord>::iterator &chordIt,
            const std::multimap<ReducedFraction, MidiChord> &chords,
            const ReducedFraction &startBarTick,
            const ReducedFraction &basicQuant)
      {
      std::vector<int> tiedNotes;
      const auto tupletRatio = tupletLimits(tuplet.tupletNumber).ratio;
      const auto firstTupletChordOnTime = Quantize::findQuantizedTupletChordOnTime(
                                          *tuplet.chords.begin()->second, tuplet.len,
                                          tupletRatio, startBarTick);

      const auto maxChordOffTime = Quantize::findMaxQuantizedTupletOffTime(
                        *chordIt, tuplet.len, tupletRatio, startBarTick);

      if (maxChordOffTime > firstTupletChordOnTime)
            return tiedNotes;

      const auto onTime = MidiTuplet::findOnTimeBetweenChords(*chordIt, chords,
                                                              basicQuant, startBarTick);
      if (onTime >= tuplet.onTime)
            return tiedNotes;

      for (int i = 0; i != chordIt->second.notes.size(); ++i) {
            const MidiNote &note = chordIt->second.notes[i];

            const auto offTimeInTuplet = Quantize::findQuantizedTupletNoteOffTime(
                        chordIt->first, note.offTime, tuplet.len, tupletRatio, startBarTick).first;

            if (offTimeInTuplet < startBarTick || offTimeInTuplet <= tuplet.onTime)
                  continue;

            const auto regularOffTime = Quantize::findQuantizedNoteOffTime(
                                                *chordIt, note.offTime, basicQuant).first;
            const auto regularError = (note.offTime - regularOffTime).absValue();
            const auto tupletError = (note.offTime - offTimeInTuplet).absValue();
            if (tupletError > regularError)
                  continue;

            tiedNotes.push_back(i);
            }

      return tiedNotes;
      }

// prepare tied tuplets - pairs of tuplet and chord back-tied to it
// voices of back-tied chords from previous bar are set explicitly
// other voices = -1
// tied tuplets with voice != -1 don't intersect each other
// tuplets can be tied only to one chord or tuplet (no 'branches')

std::list<TiedTuplet>
findBackTiedTuplets(
            const std::multimap<ReducedFraction, MidiChord> &chords,
            const std::vector<TupletInfo> &tuplets,
            const ReducedFraction &prevBarStart,
            const ReducedFraction &startBarTick,
            const ReducedFraction &basicQuant,
            int currentBarIndex)
      {
      std::list<TiedTuplet> tiedTuplets;
                  // <voice, intervals>
      std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> backTupletIntervals;
      std::set<int> usedTuplets;
      std::set<std::pair<const ReducedFraction, MidiChord> *> usedChords;
      const auto tupletChords = findMappedTupletChords(tuplets);

      for (int i = 0; i != (int)tuplets.size(); ++i) {

            Q_ASSERT_X(!tuplets[i].chords.empty(),
                       "MidiTuplets::findBackTiedTuplets", "Tuplet chords are empty");

            auto chordIt = tuplets[i].chords.begin()->second;
            while (chordIt != chords.begin() && chordIt->first >= prevBarStart) {
                  --chordIt;

                  const auto tupletIt = tupletChords.find(&*chordIt);
                  const bool isInTupletOfThisBar = (tupletIt != tupletChords.end());
                              // don't make back tie to the chord in overlapping tuplet
                  if (isInTupletOfThisBar
                              && areTupletsIntersect(tuplets[tupletIt->second], tuplets[i])) {
                        continue;
                        }
                              // remember voices of tuplets that have tied chords from previous bar
                              // and that chords don't belong to the tuplets of this bar
                  const int voice = (chordIt->second.barIndex < currentBarIndex)
                                    ? chordIt->second.voice : -1;
                  const auto interval = std::make_pair(tuplets[i].onTime,
                                                       tuplets[i].onTime + tuplets[i].len);
                              // if voice is specified and the new interval have intersection
                              // with already found back tuplets with the save voice
                              // then discard the interval
                  if (voice != -1 && haveIntersection(interval, backTupletIntervals[voice]))
                        continue;

                  const auto tiedNotes = findTiedNotes(tuplets[i], chordIt, chords,
                                                       startBarTick, basicQuant);
                  if (!tiedNotes.empty()) {
                                    // don't tie back twice to the same chord or tuplet
                        if (usedChords.find(&*chordIt) != usedChords.end())
                              continue;
                                    // don't tie back twice to the same tuplet
                        const int tupletIndex = findTupletWithChord(chordIt->second, tuplets);
                        if (usedTuplets.find(tupletIndex) != usedTuplets.end())
                              continue;
                                    // we can add back-tied tuplet; voice here can be -1
                        tiedTuplets.push_back({tuplets[i].id, voice, &*chordIt, tiedNotes});
                        backTupletIntervals[voice].push_back(interval);
                        usedChords.insert(&*chordIt);
                        usedTuplets.insert(tupletIndex);
                        break;
                        }
                  }
            }
      return tiedTuplets;
      }

// chord notes should not be rearranged here
// because note indexes are stored in tied tuplets

void assignVoices(
            std::vector<TupletInfo> &tuplets,
            std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets,
            std::list<TiedTuplet> &backTiedTuplets,
            const std::multimap<ReducedFraction, MidiChord> &chords,
            const ReducedFraction &basicQuant,
            const ReducedFraction &barStart,
            int barIndex)
      {
      Q_ASSERT_X(!haveTupletsEmptyChords(tuplets),
                 "MIDI tuplets: assignVoices", "Empty tuplet chords");

      auto pendingTuplets = findPendingTuplets(tuplets);
      auto pendingNonTuplets = findPendingNonTuplets(nonTuplets);

                  // <voice, intervals>
      std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> tupletIntervals;

      setBackTiedVoices(backTiedTuplets, tuplets, pendingTuplets, pendingNonTuplets,
                        tupletIntervals, chords, basicQuant, barStart);
      setTupletVoices(tuplets, pendingTuplets, tupletIntervals, basicQuant);
      removeUnusedTuplets(tuplets, nonTuplets, pendingTuplets, backTiedTuplets,
                          pendingNonTuplets, barIndex);

      if (tupletVoiceLimit() == 1) {
            bool excluded = excludeExtraVoiceTuplets(tuplets, nonTuplets, backTiedTuplets,
                                                     chords, basicQuant, barStart, barIndex);
            if (excluded) {         // to exlude tuplet intervals - rebuild all intervals
                  tupletIntervals.clear();
                  for (const auto &tuplet: tuplets) {
                        const int voice = tuplet.chords.begin()->second->second.voice;
                        tupletIntervals[voice].push_back(tupletInterval(tuplet, basicQuant));
                        }
                  }
            }

      setNonTupletVoices(pendingNonTuplets, tupletIntervals, tuplets,
                         chords, basicQuant, barStart);

      Q_ASSERT_X(pendingNonTuplets.empty(),
                 "MIDI tuplets: assignVoices", "Unused non-tuplets");
      Q_ASSERT_X(!haveTupletsEmptyChords(tuplets),
                 "MIDI tuplets: assignVoices", "Empty tuplet chords");
      Q_ASSERT_X(doTupletChordsHaveSameVoice(tuplets),
                 "MIDI tuplets: assignVoices", "Tuplet chords have different voices");
      Q_ASSERT_X(!haveOverlappingVoices(nonTuplets, tuplets, backTiedTuplets, chords,
                                        basicQuant, barStart),
                 "MIDI tuplets: assignVoices", "Overlapping tuplets of the same voice");
      Q_ASSERT_X(!voiceDontExceedLimit(nonTuplets, tuplets),
                 "MIDI tuplets: assignVoices", "Voice exceeds the limit");
      }

} // namespace MidiTuplet
} // namespace Ms