1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
|
#include "importmidi_tuplet_voice.h"
#include "importmidi_tuplet.h"
#include "importmidi_chord.h"
#include "importmidi_quant.h"
#include "importmidi_inner.h"
#include "importmidi_voice.h"
#include "importmidi_operations.h"
#include "libmscore/mscore.h"
#include "mscore/preferences.h"
#include <set>
namespace Ms {
namespace MidiTuplet {
int tupletVoiceLimit()
{
const auto &opers = preferences.midiImportOperations.data()->trackOpers;
const int currentTrack = preferences.midiImportOperations.currentTrack();
const int allowedVoices = MidiVoice::toIntVoiceCount(opers.maxVoiceCount.value(currentTrack));
Q_ASSERT_X(allowedVoices <= VOICES,
"MidiTuplet::tupletVoiceLimit",
"Allowed voice count exceeds MuseScore voice limit");
// for multiple voices: one voice is reserved for non-tuplet chords
return (allowedVoices == 1) ? 1 : allowedVoices - 1;
}
std::pair<ReducedFraction, ReducedFraction>
chordInterval(const std::pair<const ReducedFraction, MidiChord> &chord,
const std::multimap<ReducedFraction, MidiChord> &chords,
const ReducedFraction &basicQuant,
const ReducedFraction &barStart)
{
const auto onTime = MidiTuplet::findOnTimeBetweenChords(chord, chords, basicQuant, barStart);
auto offTime = Quantize::findMaxQuantizedOffTime(chord, basicQuant);
if (offTime < onTime)
offTime = onTime;
if (offTime == onTime)
offTime += Quantize::quantForLen(MChord::minNoteLen(chord), basicQuant);
Q_ASSERT_X(offTime > onTime, "MidiTuplet::chordInterval", "Off time <= On time");
return std::make_pair(onTime, offTime);
}
int findTupletWithChord(const MidiChord &midiChord,
const std::vector<TupletInfo> &tuplets)
{
for (int i = 0; i != (int)tuplets.size(); ++i) {
for (const auto &chord: tuplets[i].chords) {
if (&(chord.second->second) == &midiChord)
return i;
}
}
return -1;
}
std::pair<ReducedFraction, ReducedFraction>
backTiedInterval(const TiedTuplet &tiedTuplet,
const std::vector<TupletInfo> &tuplets,
const std::multimap<ReducedFraction, MidiChord> &chords,
const ReducedFraction &basicQuant,
const ReducedFraction &barStart)
{
const TupletInfo &tuplet = tupletFromId(tiedTuplet.tupletId, tuplets);
const auto end = tupletInterval(tuplet, basicQuant).second;
const MidiChord &midiChord = tiedTuplet.chord->second;
const int tupletIndex = findTupletWithChord(midiChord, tuplets);
const auto beg = (tupletIndex != -1)
? tupletInterval(tuplets[tupletIndex], basicQuant).first
: chordInterval(*tiedTuplet.chord, chords, basicQuant, barStart).first;
return std::make_pair(beg, end);
}
void setTupletVoice(
std::map<ReducedFraction,
std::multimap<ReducedFraction, MidiChord>::iterator> &tupletChords,
int voice)
{
for (auto &tupletChord: tupletChords) {
MidiChord &midiChord = tupletChord.second->second;
midiChord.voice = voice;
}
}
void setTupletVoices(
std::vector<TupletInfo> &tuplets,
std::set<int> &pendingTuplets,
std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &tupletIntervals,
const ReducedFraction &basicQuant)
{
const int limit = tupletVoiceLimit();
int voice = 0;
while (!pendingTuplets.empty() && voice < limit) {
for (auto it = pendingTuplets.begin(); it != pendingTuplets.end(); ) {
TupletInfo &tuplet = tupletFromId(*it, tuplets);
const auto interval = tupletInterval(tuplet, basicQuant);
if (!haveIntersection(interval, tupletIntervals[voice])) {
setTupletVoice(tuplet.chords, voice);
tupletIntervals[voice].push_back(interval);
it = pendingTuplets.erase(it);
continue;
}
++it;
}
++voice;
}
}
int findPitchDist(
const QList<MidiNote> ¬es,
const std::vector<TupletInfo> &tuplets,
int voice)
{
int pitchDist = std::numeric_limits<int>::max(); // bad value - only for the last choice
if (tuplets.empty())
return pitchDist;
int tupletPitch = 0;
for (const auto &tuplet: tuplets) {
if (tuplet.chords.begin()->second->second.voice != voice)
continue;
int counter = 0;
for (const auto &chord: tuplet.chords) {
const MidiChord &c = chord.second->second;
tupletPitch += MChord::chordAveragePitch(c.notes);
++counter;
}
tupletPitch = qRound(tupletPitch * 1.0 / counter);
break;
}
if (tupletPitch == 0)
return pitchDist;
const int chordPitch = MChord::chordAveragePitch(notes);
pitchDist = qAbs(chordPitch - tupletPitch);
return pitchDist;
}
void setNonTupletVoices(
std::set<std::pair<const ReducedFraction, MidiChord> *> &pendingNonTuplets,
const std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &tupletIntervals,
const std::vector<TupletInfo> &tuplets,
const std::multimap<ReducedFraction, MidiChord> &chords,
const ReducedFraction &basicQuant,
const ReducedFraction &barStart)
{
const int limit = MidiVoice::voiceLimit();
while (!pendingNonTuplets.empty()) {
auto chord = *pendingNonTuplets.begin();
const auto interval = chordInterval(*chord, chords, basicQuant, barStart);
// pick the voice such that the average pitch difference
// between the non-tuplet chord and tuplets with this voice
// is the smallest
int bestVoice = -1;
int minPitchDist = -1;
for (int voice = 0; voice < limit; ++voice) {
const auto fit = tupletIntervals.find(voice);
if (fit == tupletIntervals.end() || !haveIntersection(interval, fit->second)) {
const int pitchDist = findPitchDist(chord->second.notes, tuplets, voice);
if (minPitchDist == -1 || pitchDist < minPitchDist) {
minPitchDist = pitchDist;
bestVoice = voice;
}
}
}
Q_ASSERT_X(bestVoice >= 0,
"MidiTuplet::setNonTupletVoices", "Best voice not found");
chord->second.voice = bestVoice;
pendingNonTuplets.erase(pendingNonTuplets.begin());
// don't insert chord interval here
}
}
#ifdef IMPORTMIDI_DEBUG
bool areAllElementsUnique(
const std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets)
{
std::set<std::pair<const ReducedFraction, MidiChord> *> chords;
for (const auto &chord: nonTuplets) {
if (chords.find(&*chord) == chords.end())
chords.insert(&*chord);
else
return false;
}
return true;
}
bool haveTupletsEmptyChords(const std::vector<TupletInfo> &tuplets)
{
for (const auto &tuplet: tuplets) {
if (tuplet.chords.empty())
return true;
}
return false;
}
bool doTupletChordsHaveSameVoice(const std::vector<TupletInfo> &tuplets)
{
for (const auto &tuplet: tuplets) {
auto it = tuplet.chords.cbegin();
const int voice = it->second->second.voice;
++it;
for ( ; it != tuplet.chords.cend(); ++it) {
if (it->second->second.voice != voice)
return false;
}
}
return true;
}
// back tied tuplets are not checked here
bool haveOverlappingVoices(
const std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets,
const std::vector<TupletInfo> &tuplets,
const std::list<TiedTuplet> &backTiedTuplets,
const std::multimap<ReducedFraction, MidiChord> &chords,
const ReducedFraction &basicQuant,
const ReducedFraction &barStart)
{
// <voice, intervals>
std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> intervals;
for (const auto &tuplet: tuplets) {
const int voice = tuplet.chords.begin()->second->second.voice;
const auto interval = std::make_pair(tuplet.onTime, tuplet.onTime + tuplet.len);
if (haveIntersection(interval, intervals[voice]))
return true;
else
intervals[voice].push_back(interval);
}
for (const auto &chord: nonTuplets) {
const int voice = chord->second.voice;
const auto interval = chordInterval(*chord, chords, basicQuant, barStart);
if (haveIntersection(interval, intervals[voice])) {
bool flag = false;
// if chord is tied then it can intersect tuplet
for (const TiedTuplet &tiedTuplet: backTiedTuplets) {
if (tiedTuplet.chord == (&*chord)
&& (tiedTuplet.voice == -1 || tiedTuplet.voice == voice)) {
flag = true;
break;
}
}
if (!flag)
return true;
}
}
return false;
}
size_t chordCount(
const std::vector<TupletInfo> &tuplets,
const std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets)
{
size_t sum = nonTuplets.size();
for (const auto &tuplet: tuplets) {
sum += tuplet.chords.size();
}
return sum;
}
bool voiceDontExceedLimit(
const std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets,
const std::vector<TupletInfo> &tuplets)
{
for (const auto &tuplet: tuplets) {
const int voice = tuplet.chords.begin()->second->second.voice;
if (voice >= MidiVoice::voiceLimit())
return true;
}
for (const auto &chord: nonTuplets) {
const int voice = chord->second.voice;
if (voice >= MidiVoice::voiceLimit())
return true;
}
return false;
}
#endif
void eraseBackTiedTuplet(
int tupletId,
std::list<TiedTuplet> &backTiedTuplets)
{
for (auto it = backTiedTuplets.begin(); it != backTiedTuplets.end(); ++it) {
if (it->tupletId == tupletId) {
backTiedTuplets.erase(it);
break;
}
}
}
// for the case when voice limit = 1
bool excludeExtraVoiceTuplets(
std::vector<TupletInfo> &tuplets,
std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets,
std::list<TiedTuplet> &backTiedTuplets,
const std::multimap<ReducedFraction, MidiChord> &chords,
const ReducedFraction &basicQuant,
const ReducedFraction &barStart,
int barIndex)
{
size_t sz = tuplets.size();
if (sz == 0)
return false;
std::list<std::multimap<ReducedFraction, MidiChord>::iterator> newNonTuplets;
size_t addedCount = nonTuplets.size();
while (addedCount > 0) {
nonTuplets.splice(nonTuplets.begin(), newNonTuplets);
// remove tuplets that are overlapped with non-tuplets
for (size_t i = 0; i < sz; ) {
const auto interval = tupletInterval(tuplets[i], basicQuant);
bool shift = false;
size_t counter = 0;
for (const auto &nonTuplet: nonTuplets) {
++counter;
if (counter > addedCount)
break;
if (haveIntersection(interval, chordInterval(*nonTuplet, chords,
basicQuant, barStart))) {
bool isTied = false;
for (const TiedTuplet &tiedTuplet: backTiedTuplets) {
if (tiedTuplet.tupletId == tuplets[i].id
&& tiedTuplet.chord == &*nonTuplet) {
isTied = true;
break;
}
}
if (!isTied) {
for (const auto &chord: tuplets[i].chords) {
if (chord.second->second.barIndex == barIndex)
newNonTuplets.push_back(chord.second);
}
eraseBackTiedTuplet(tuplets[i].id, backTiedTuplets);
--sz;
if (i < sz) {
shift = true;
tuplets[i] = tuplets[sz];
}
break;
}
}
}
if (shift)
continue;
++i;
}
addedCount = newNonTuplets.size();
}
Q_ASSERT_X(areAllElementsUnique(nonTuplets),
"MidiTuplet::excludeExtraVoiceTuplets", "Non unique chords in non-tuplets");
bool excluded = (sz != tuplets.size());
tuplets.resize(sz);
return excluded;
}
void removeUnusedTuplets(
std::vector<TupletInfo> &tuplets,
std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets,
std::set<int> &pendingTuplets,
std::list<TiedTuplet> &backTiedTuplets,
std::set<std::pair<const ReducedFraction, MidiChord> *> &pendingNonTuplets,
int barIndex)
{
if (pendingTuplets.empty())
return;
std::vector<TupletInfo> newTuplets;
for (int i = 0; i != (int)tuplets.size(); ++i) {
if (pendingTuplets.find(tuplets[i].id) == pendingTuplets.end()) {
newTuplets.push_back(tuplets[i]);
}
else {
eraseBackTiedTuplet(tuplets[i].id, backTiedTuplets);
for (const auto &chord: tuplets[i].chords) {
if (chord.second->second.barIndex == barIndex) {
nonTuplets.push_back(chord.second);
pendingNonTuplets.insert(&*chord.second);
}
}
}
}
pendingTuplets.clear();
std::swap(tuplets, newTuplets);
}
std::set<int> findPendingTuplets(const std::vector<TupletInfo> &tuplets)
{
std::set<int> pendingTuplets; // tuplet indexes
for (int i = 0; i != (int)tuplets.size(); ++i) {
pendingTuplets.insert(tuplets[i].id);
}
return pendingTuplets;
}
std::set<std::pair<const ReducedFraction, MidiChord> *>
findPendingNonTuplets(
const std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets)
{
std::set<std::pair<const ReducedFraction, MidiChord> *> pendingNonTuplets;
for (const auto &c: nonTuplets) {
pendingNonTuplets.insert(&*c);
}
return pendingNonTuplets;
}
std::list<TiedTuplet>::iterator
eraseBackTiedTuplet(const std::list<TiedTuplet>::iterator &it,
std::list<TiedTuplet> &backTiedTuplets,
const TupletInfo &tuplet)
{
for (const auto &chord: tuplet.chords) {
for (auto it2 = backTiedTuplets.begin(); it2 != backTiedTuplets.end(); ++it2) {
if (&(chord.second->second) == &(it2->chord->second)) {
backTiedTuplets.erase(it2);
break;
}
}
}
return backTiedTuplets.erase(it);
}
void setVoicesFromPrevBars(
std::list<TiedTuplet> &backTiedTuplets,
std::vector<TupletInfo> &tuplets,
std::set<int> &pendingTuplets,
const std::set<std::pair<const ReducedFraction, MidiChord> *> &pendingNonTuplets,
std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &tupletIntervals,
std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &backTupletIntervals,
const std::multimap<ReducedFraction, MidiChord> &chords,
const ReducedFraction &basicQuant,
const ReducedFraction &barStart)
{
#ifdef NDEBUG
(void)pendingNonTuplets;
#endif
bool loopAgain = false;
do {
for (auto it = backTiedTuplets.begin(); it != backTiedTuplets.end(); ) {
const TiedTuplet &tiedTuplet = *it;
TupletInfo &tuplet = tupletFromId(tiedTuplet.tupletId, tuplets);
const auto backInterval = std::make_pair(tuplet.onTime, tuplet.onTime + tuplet.len);
if (tiedTuplet.voice == -1) {
++it;
continue;
}
if (haveIntersection(backInterval, backTupletIntervals[tiedTuplet.voice])) {
it = backTiedTuplets.erase(it);
continue;
}
for (const auto &chord: tuplet.chords) {
for (auto it2 = backTiedTuplets.begin();
it2 != backTiedTuplets.end(); ++it2) {
if (it2 == it)
continue;
if (&(chord.second->second) == &(it2->chord->second)
&& it2->voice == -1) {
it2->voice = tiedTuplet.voice;
loopAgain = true;
break;
}
}
}
setTupletVoice(tuplet.chords, tiedTuplet.voice);
backTupletIntervals[tiedTuplet.voice].push_back(backInterval);
tupletIntervals[tiedTuplet.voice].push_back(backInterval);
// add to intervals chord from previous bar
tupletIntervals[tiedTuplet.voice].push_back(
chordInterval(*tiedTuplet.chord, chords, basicQuant, barStart));
pendingTuplets.erase(tiedTuplet.tupletId);
Q_ASSERT_X(pendingNonTuplets.find(tiedTuplet.chord) == pendingNonTuplets.end(),
"MidiTuplet::setBackTiedVoices",
"Tied non-tuplet chord should not be here");
++it;
}
} while (loopAgain);
}
void setTiedChordVoice(
std::list<TiedTuplet> &backTiedTuplets,
std::vector<TupletInfo> &tuplets,
std::set<int> &pendingTuplets,
std::set<std::pair<const ReducedFraction, MidiChord> *> &pendingNonTuplets,
std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &tupletIntervals,
std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &backTupletIntervals,
const std::multimap<ReducedFraction, MidiChord> &chords,
const std::list<TiedTuplet>::iterator &backTiedIt,
bool isNonTupletBackChord,
const ReducedFraction &basicQuant,
const ReducedFraction &barStart)
{
const TiedTuplet &tiedTuplet = *backTiedIt;
if (isNonTupletBackChord) {
// non-tuplet chord tied
const auto interval = chordInterval(*tiedTuplet.chord, chords, basicQuant, barStart);
backTupletIntervals[tiedTuplet.voice].push_back(interval);
tiedTuplet.chord->second.voice = tiedTuplet.voice;
if (tupletVoiceLimit() > 1)
tupletIntervals[tiedTuplet.voice].push_back(interval);
pendingNonTuplets.erase(tiedTuplet.chord);
}
else {
// tuplet tied
const int i = findTupletWithChord(tiedTuplet.chord->second, tuplets);
Q_ASSERT_X(i != -1, "MidiTuplet::setBackTiedVoices",
"Tuplet chord not found in tuplets");
auto it2 = std::next(backTiedIt);
for ( ; it2 != backTiedTuplets.end(); ++it2) {
if (it2->tupletId == tuplets[i].id)
break;
}
if (it2 != backTiedTuplets.end()) {
if (it2->voice == -1)
it2->voice = tiedTuplet.voice;
}
else {
// set voice of not back-tied tuplet that have tied chord
setTupletVoice(tuplets[i].chords, tiedTuplet.voice);
const auto interval = tupletInterval(tuplets[i], basicQuant);
tupletIntervals[tiedTuplet.voice].push_back(interval);
backTupletIntervals[tiedTuplet.voice].push_back(interval);
pendingTuplets.erase(tuplets[i].id);
}
}
}
void setVoiceOfConnectedBackTied(
std::list<TiedTuplet> &backTiedTuplets,
int tiedTupletVoice,
const std::set<int> &pendingTuplets,
const TupletInfo &tuplet,
const std::list<TiedTuplet>::iterator &backTiedIt)
{
for (const auto &chord: tuplet.chords) {
for (auto it2 = std::next(backTiedIt); it2 != backTiedTuplets.end(); ++it2) {
if (pendingTuplets.find(it2->tupletId) == pendingTuplets.end())
continue;
if (&(chord.second->second) == &(it2->chord->second) && it2->voice == -1) {
it2->voice = tiedTupletVoice;
break;
}
}
}
}
int findVoiceForBackTied(
const std::pair<const ReducedFraction, MidiChord> &tiedTupletChord,
int voiceLimit,
const std::pair<ReducedFraction, ReducedFraction> &backInterval,
std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &backTupletIntervals,
const std::multimap<ReducedFraction, MidiChord> &chords,
bool isNonTupletBackChord,
const ReducedFraction &basicQuant,
const ReducedFraction &barStart)
{
int voice = 0;
for ( ; voice != voiceLimit; ++voice) {
if (haveIntersection(backInterval, backTupletIntervals[voice])
|| (isNonTupletBackChord && haveIntersection(
chordInterval(tiedTupletChord, chords, basicQuant, barStart),
backTupletIntervals[voice]))) {
continue;
}
break;
}
return voice;
}
std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction> > >
findBackTupletIntervals(
const std::list<TiedTuplet> &backTiedTuplets,
const std::vector<TupletInfo> &tuplets)
{
std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> backTupletIntervals;
for (const auto &t: backTiedTuplets) {
const auto &tuplet = tupletFromId(t.tupletId, tuplets);
const auto interval = std::make_pair(tuplet.onTime, tuplet.onTime + tuplet.len);
backTupletIntervals[t.voice].push_back(interval);
}
return backTupletIntervals;
}
void setBackTiedVoices(
std::list<TiedTuplet> &backTiedTuplets,
std::vector<TupletInfo> &tuplets,
std::set<int> &pendingTuplets,
std::set<std::pair<const ReducedFraction, MidiChord> *> &pendingNonTuplets,
std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> &tupletIntervals,
const std::multimap<ReducedFraction, MidiChord> &chords,
const ReducedFraction &basicQuant,
const ReducedFraction &barStart)
{
auto backTupletIntervals = findBackTupletIntervals(backTiedTuplets, tuplets);
// set voices that are already set from one of previous bars
setVoicesFromPrevBars(backTiedTuplets, tuplets, pendingTuplets, pendingNonTuplets,
tupletIntervals, backTupletIntervals, chords, basicQuant, barStart);
// set yet unset back tied voices
const int limit = tupletVoiceLimit();
for (auto it = backTiedTuplets.begin(); it != backTiedTuplets.end(); ) {
TiedTuplet &tiedTuplet = *it;
if (pendingTuplets.find(tiedTuplet.tupletId) == pendingTuplets.end()) {
++it;
continue;
}
TupletInfo &tuplet = tupletFromId(tiedTuplet.tupletId, tuplets);
const auto backInterval = std::make_pair(tuplet.onTime, tuplet.onTime + tuplet.len);
bool isNonTupletBackChord
= (pendingNonTuplets.find(tiedTuplet.chord) != pendingNonTuplets.end());
if (tiedTuplet.voice == -1) {
const int voice = findVoiceForBackTied(
*tiedTuplet.chord, limit, backInterval, backTupletIntervals,
chords, isNonTupletBackChord, basicQuant, barStart);
if (voice < limit) {
tiedTuplet.voice = voice;
}
else { // no available voices
it = eraseBackTiedTuplet(it, backTiedTuplets, tuplet);
continue;
}
}
else {
if (haveIntersection(backInterval, backTupletIntervals[tiedTuplet.voice])
|| (isNonTupletBackChord
&& haveIntersection(chordInterval(*tiedTuplet.chord, chords,
basicQuant, barStart),
backTupletIntervals[tiedTuplet.voice]))) {
it = eraseBackTiedTuplet(it, backTiedTuplets, tuplet);
continue;
}
}
setVoiceOfConnectedBackTied(backTiedTuplets, tiedTuplet.voice,
pendingTuplets, tuplet, it);
// set voices of tied tuplet chords
setTupletVoice(tuplet.chords, tiedTuplet.voice);
backTupletIntervals[tiedTuplet.voice].push_back(backInterval);
tupletIntervals[tiedTuplet.voice].push_back(tupletInterval(tuplet, basicQuant));
pendingTuplets.erase(tiedTuplet.tupletId);
setTiedChordVoice(backTiedTuplets, tuplets, pendingTuplets, pendingNonTuplets,
tupletIntervals, backTupletIntervals, chords, it,
isNonTupletBackChord, basicQuant, barStart);
++it;
}
}
std::map<std::pair<const ReducedFraction, MidiChord> *, int>
findMappedTupletChords(const std::vector<TupletInfo> &tuplets)
{
// <chord address, tupletIndex>
std::map<std::pair<const ReducedFraction, MidiChord> *, int> tupletChords;
for (int i = 0; i != (int)tuplets.size(); ++i) {
for (const auto &tupletChord: tuplets[i].chords) {
auto tupletIt = tupletChord.second;
tupletChords.insert({&*tupletIt, i});
}
}
return tupletChords;
}
bool areTupletsIntersect(const TupletInfo &t1, const TupletInfo &t2)
{
const auto onTime1 = t1.onTime;
const auto endTime1 = onTime1 + t1.len;
const auto onTime2 = t2.onTime;
const auto endTime2 = onTime1 + t2.len;
return (endTime1 > onTime2 && onTime1 < endTime2);
}
// result: tied notes indexes
std::vector<int> findTiedNotes(
const TupletInfo &tuplet,
const std::multimap<ReducedFraction, MidiChord>::iterator &chordIt,
const std::multimap<ReducedFraction, MidiChord> &chords,
const ReducedFraction &startBarTick,
const ReducedFraction &basicQuant)
{
std::vector<int> tiedNotes;
const auto tupletRatio = tupletLimits(tuplet.tupletNumber).ratio;
const auto firstTupletChordOnTime = Quantize::findQuantizedTupletChordOnTime(
*tuplet.chords.begin()->second, tuplet.len,
tupletRatio, startBarTick);
const auto maxChordOffTime = Quantize::findMaxQuantizedTupletOffTime(
*chordIt, tuplet.len, tupletRatio, startBarTick);
if (maxChordOffTime > firstTupletChordOnTime)
return tiedNotes;
const auto onTime = MidiTuplet::findOnTimeBetweenChords(*chordIt, chords,
basicQuant, startBarTick);
if (onTime >= tuplet.onTime)
return tiedNotes;
for (int i = 0; i != chordIt->second.notes.size(); ++i) {
const MidiNote ¬e = chordIt->second.notes[i];
const auto offTimeInTuplet = Quantize::findQuantizedTupletNoteOffTime(
chordIt->first, note.offTime, tuplet.len, tupletRatio, startBarTick).first;
if (offTimeInTuplet < startBarTick || offTimeInTuplet <= tuplet.onTime)
continue;
const auto regularOffTime = Quantize::findQuantizedNoteOffTime(
*chordIt, note.offTime, basicQuant).first;
const auto regularError = (note.offTime - regularOffTime).absValue();
const auto tupletError = (note.offTime - offTimeInTuplet).absValue();
if (tupletError > regularError)
continue;
tiedNotes.push_back(i);
}
return tiedNotes;
}
// prepare tied tuplets - pairs of tuplet and chord back-tied to it
// voices of back-tied chords from previous bar are set explicitly
// other voices = -1
// tied tuplets with voice != -1 don't intersect each other
// tuplets can be tied only to one chord or tuplet (no 'branches')
std::list<TiedTuplet>
findBackTiedTuplets(
const std::multimap<ReducedFraction, MidiChord> &chords,
const std::vector<TupletInfo> &tuplets,
const ReducedFraction &prevBarStart,
const ReducedFraction &startBarTick,
const ReducedFraction &basicQuant,
int currentBarIndex)
{
std::list<TiedTuplet> tiedTuplets;
// <voice, intervals>
std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> backTupletIntervals;
std::set<int> usedTuplets;
std::set<std::pair<const ReducedFraction, MidiChord> *> usedChords;
const auto tupletChords = findMappedTupletChords(tuplets);
for (int i = 0; i != (int)tuplets.size(); ++i) {
Q_ASSERT_X(!tuplets[i].chords.empty(),
"MidiTuplets::findBackTiedTuplets", "Tuplet chords are empty");
auto chordIt = tuplets[i].chords.begin()->second;
while (chordIt != chords.begin() && chordIt->first >= prevBarStart) {
--chordIt;
const auto tupletIt = tupletChords.find(&*chordIt);
const bool isInTupletOfThisBar = (tupletIt != tupletChords.end());
// don't make back tie to the chord in overlapping tuplet
if (isInTupletOfThisBar
&& areTupletsIntersect(tuplets[tupletIt->second], tuplets[i])) {
continue;
}
// remember voices of tuplets that have tied chords from previous bar
// and that chords don't belong to the tuplets of this bar
const int voice = (chordIt->second.barIndex < currentBarIndex)
? chordIt->second.voice : -1;
const auto interval = std::make_pair(tuplets[i].onTime,
tuplets[i].onTime + tuplets[i].len);
// if voice is specified and the new interval have intersection
// with already found back tuplets with the save voice
// then discard the interval
if (voice != -1 && haveIntersection(interval, backTupletIntervals[voice]))
continue;
const auto tiedNotes = findTiedNotes(tuplets[i], chordIt, chords,
startBarTick, basicQuant);
if (!tiedNotes.empty()) {
// don't tie back twice to the same chord or tuplet
if (usedChords.find(&*chordIt) != usedChords.end())
continue;
// don't tie back twice to the same tuplet
const int tupletIndex = findTupletWithChord(chordIt->second, tuplets);
if (usedTuplets.find(tupletIndex) != usedTuplets.end())
continue;
// we can add back-tied tuplet; voice here can be -1
tiedTuplets.push_back({tuplets[i].id, voice, &*chordIt, tiedNotes});
backTupletIntervals[voice].push_back(interval);
usedChords.insert(&*chordIt);
usedTuplets.insert(tupletIndex);
break;
}
}
}
return tiedTuplets;
}
// chord notes should not be rearranged here
// because note indexes are stored in tied tuplets
void assignVoices(
std::vector<TupletInfo> &tuplets,
std::list<std::multimap<ReducedFraction, MidiChord>::iterator> &nonTuplets,
std::list<TiedTuplet> &backTiedTuplets,
const std::multimap<ReducedFraction, MidiChord> &chords,
const ReducedFraction &basicQuant,
const ReducedFraction &barStart,
int barIndex)
{
Q_ASSERT_X(!haveTupletsEmptyChords(tuplets),
"MIDI tuplets: assignVoices", "Empty tuplet chords");
auto pendingTuplets = findPendingTuplets(tuplets);
auto pendingNonTuplets = findPendingNonTuplets(nonTuplets);
// <voice, intervals>
std::map<int, std::vector<std::pair<ReducedFraction, ReducedFraction>>> tupletIntervals;
setBackTiedVoices(backTiedTuplets, tuplets, pendingTuplets, pendingNonTuplets,
tupletIntervals, chords, basicQuant, barStart);
setTupletVoices(tuplets, pendingTuplets, tupletIntervals, basicQuant);
removeUnusedTuplets(tuplets, nonTuplets, pendingTuplets, backTiedTuplets,
pendingNonTuplets, barIndex);
if (tupletVoiceLimit() == 1) {
bool excluded = excludeExtraVoiceTuplets(tuplets, nonTuplets, backTiedTuplets,
chords, basicQuant, barStart, barIndex);
if (excluded) { // to exlude tuplet intervals - rebuild all intervals
tupletIntervals.clear();
for (const auto &tuplet: tuplets) {
const int voice = tuplet.chords.begin()->second->second.voice;
tupletIntervals[voice].push_back(tupletInterval(tuplet, basicQuant));
}
}
}
setNonTupletVoices(pendingNonTuplets, tupletIntervals, tuplets,
chords, basicQuant, barStart);
Q_ASSERT_X(pendingNonTuplets.empty(),
"MIDI tuplets: assignVoices", "Unused non-tuplets");
Q_ASSERT_X(!haveTupletsEmptyChords(tuplets),
"MIDI tuplets: assignVoices", "Empty tuplet chords");
Q_ASSERT_X(doTupletChordsHaveSameVoice(tuplets),
"MIDI tuplets: assignVoices", "Tuplet chords have different voices");
Q_ASSERT_X(!haveOverlappingVoices(nonTuplets, tuplets, backTiedTuplets, chords,
basicQuant, barStart),
"MIDI tuplets: assignVoices", "Overlapping tuplets of the same voice");
Q_ASSERT_X(!voiceDontExceedLimit(nonTuplets, tuplets),
"MIDI tuplets: assignVoices", "Voice exceeds the limit");
}
} // namespace MidiTuplet
} // namespace Ms
|