1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
#include "importmidi_lrhand.h"
#include "importmidi_inner.h"
#include "importmidi_fraction.h"
#include "importmidi_chord.h"
#include "importmidi_operations.h"
#include "mscore/preferences.h"
namespace Ms {
extern Preferences preferences;
namespace LRHand {
bool needToSplit(const std::multimap<ReducedFraction, MidiChord> &chords,
int midiProgram,
bool isDrumTrack)
{
if (isDrumTrack || !MChord::isGrandStaffProgram(midiProgram))
return false;
const int octave = 12;
for (const auto &chord: chords) {
const MidiChord &c = chord.second;
int minPitch = std::numeric_limits<int>::max();
int maxPitch = 0;
for (const auto ¬e: c.notes) {
if (note.pitch < minPitch)
minPitch = note.pitch;
if (note.pitch > maxPitch)
maxPitch = note.pitch;
}
if (maxPitch - minPitch > octave)
return true;
}
return false;
}
#ifdef IMPORTMIDI_DEBUG
bool areNotesSortedByPitchInAscOrder(const QList<MidiNote>& notes)
{
for (int i = 0; i != notes.size() - 1; ++i) {
if (notes[i].pitch > notes[i + 1].pitch)
return false;
}
return true;
}
#endif
struct SplitTry {
int penalty = 0;
// split point - note index, such that: LOW part = [0, split point)
// and HIGH part = [split point, size)
// if split point = size then the chord is assigned to the left hand
int prevSplitPoint = -1;
};
struct ChordSplitData {
std::multimap<ReducedFraction, MidiChord>::iterator chord;
std::vector<SplitTry> possibleSplits; // each index correspoinds to the same note index
};
int findLastSplitPoint(const std::vector<ChordSplitData> &splits)
{
int splitPoint = -1;
int minPenalty = std::numeric_limits<int>::max();
const auto &possibleSplits = splits[splits.size() - 1].possibleSplits;
for (int i = 0; i != (int)possibleSplits.size(); ++i) {
if (possibleSplits[i].penalty < minPenalty) {
minPenalty = possibleSplits[i].penalty;
splitPoint = i;
}
}
Q_ASSERT_X(splitPoint != -1,
"LRHand::findLastSplitPoint", "Last split point was not found");
return splitPoint;
}
// backward dynamic programming step - collect optimal voice separations
void splitChords(
const std::vector<ChordSplitData> &splits,
std::multimap<ReducedFraction, MidiChord> &leftHandChords,
std::multimap<ReducedFraction, MidiChord> &chords)
{
Q_ASSERT_X(splits.size() == chords.size(),
"LRHand::collectSolution", "Sizes of split data and chords don't match");
int splitPoint = findLastSplitPoint(splits);
for (int pos = splits.size() - 1; ; --pos) {
MidiChord &oldChord = splits[pos].chord->second;
MidiChord newChord(oldChord);
if (splitPoint > 0 && splitPoint < oldChord.notes.size()) {
const auto oldNotes = oldChord.notes;
oldChord.notes.clear();
for (int i = splitPoint; i != oldNotes.size(); ++i)
oldChord.notes.append(oldNotes[i]);
newChord.notes.clear();
for (int i = 0; i != splitPoint; ++i)
newChord.notes.append(oldNotes[i]);
leftHandChords.insert({splits[pos].chord->first, newChord});
}
else if (splitPoint == oldChord.notes.size()) {
leftHandChords.insert({splits[pos].chord->first, newChord});
chords.erase(splits[pos].chord);
}
if (pos == 0)
break;
splitPoint = splits[pos].possibleSplits[splitPoint].prevSplitPoint;
}
}
int findPitchWidthPenalty(const QList<MidiNote> ¬es, int splitPoint)
{
const int octave = 12;
const int maxPitchWidth = octave + 2;
int penalty = 0;
if (splitPoint > 0) {
const int lowPitchWidth = qAbs(notes[0].pitch
- notes[splitPoint - 1].pitch);
if (lowPitchWidth <= octave)
penalty += 0;
else if (lowPitchWidth <= maxPitchWidth)
penalty += 20;
else
penalty += 100;
}
if (splitPoint < notes.size()) {
const int highPitchWidth = qAbs(notes[splitPoint].pitch
- notes[notes.size() - 1].pitch);
if (highPitchWidth <= octave)
penalty += 0;
else if (highPitchWidth <= maxPitchWidth)
penalty += 20;
else
penalty += 100;
}
return penalty;
}
bool isOctave(const QList<MidiNote> ¬es, int beg, int end)
{
Q_ASSERT_X(end > 0 && beg >= 0 && end > beg, "LRHand::isOctave", "Invalid note indexes");
const int octave = 12;
return (end - beg == 2 && notes[end - 1].pitch - notes[beg].pitch == octave);
}
int findSimilarityPenalty(
const QList<MidiNote> ¬es,
const QList<MidiNote> &prevNotes,
int splitPoint,
int prevSplitPoint)
{
int penalty = 0;
// check for octaves and accompaniment
if (splitPoint > 0 && prevSplitPoint > 0) {
const bool isLowOctave = isOctave(notes, 0, splitPoint);
const bool isPrevLowOctave = isOctave(prevNotes, 0, prevSplitPoint);
if (isLowOctave && isPrevLowOctave) // octaves
penalty -= 12;
else if (splitPoint > 1 && prevSplitPoint > 1) // accompaniment
penalty -= 5;
}
if (splitPoint < notes.size() && prevSplitPoint < prevNotes.size()) {
const bool isHighOctave = isOctave(notes, splitPoint, notes.size());
const bool isPrevHighOctave = isOctave(prevNotes, prevSplitPoint, prevNotes.size());
if (isHighOctave && isPrevHighOctave)
penalty -= 12;
else if (notes.size() - splitPoint > 1 && prevNotes.size() - prevSplitPoint > 1)
penalty -= 5;
}
// check for one-note melody
if (splitPoint - 0 == 1 && prevSplitPoint - 0 == 1)
penalty -= 12;
if (notes.size() - splitPoint == 1 && prevNotes.size() - prevSplitPoint == 1)
penalty -= 12;
return penalty;
}
bool areOffTimesEqual(const QList<MidiNote> ¬es, int beg, int end)
{
Q_ASSERT_X(end > 0 && beg >= 0 && end > beg,
"LRHand::areOffTimesEqual", "Invalid note indexes");
bool areEqual = true;
const ReducedFraction firstOffTime = notes[beg].offTime;
for (int i = beg + 1; i < end; ++i) {
if (notes[i].offTime != firstOffTime) {
areEqual = false;
break;
}
}
return areEqual;
}
int findDurationPenalty(const QList<MidiNote> ¬es, int splitPoint)
{
int penalty = 0;
if (splitPoint > 0 && areOffTimesEqual(notes, 0, splitPoint))
penalty -= 10;
if (splitPoint < notes.size() && areOffTimesEqual(notes, splitPoint, notes.size()))
penalty -= 10;
return penalty;
}
int findNoteCountPenalty(const QList<MidiNote> ¬es, int splitPoint)
{
const int leftHandCount = splitPoint;
const int rightHandCount = notes.size() - splitPoint;
if (rightHandCount > 0 && leftHandCount > 0 && leftHandCount < rightHandCount)
return 5;
if (rightHandCount == 0 && leftHandCount > 1)
return 10;
return 0;
}
int findIntersectionPenalty(
const ReducedFraction ¤tOnTime,
int prevPos,
int prevSplitPoint,
const ReducedFraction &maxChordLen,
const std::vector<ChordSplitData> &splits,
bool hasLowNotes,
bool hasHighNotes)
{
int penalty = 0;
int pos = prevPos;
int splitPoint = prevSplitPoint;
while (splits[pos].chord->first + maxChordLen > currentOnTime) {
const MidiChord &chord = splits[pos].chord->second;
if (hasLowNotes) {
ReducedFraction maxNoteOffTime;
for (int i = 0; i != splitPoint; ++i) {
if (chord.notes[i].offTime > maxNoteOffTime)
maxNoteOffTime = chord.notes[i].offTime;
}
if (maxNoteOffTime > currentOnTime)
penalty += 10;
}
if (hasHighNotes) {
ReducedFraction maxNoteOffTime;
for (int i = splitPoint; i != chord.notes.size(); ++i) {
if (chord.notes[i].offTime > maxNoteOffTime)
maxNoteOffTime = chord.notes[i].offTime;
}
if (maxNoteOffTime > currentOnTime)
penalty += 10;
}
if (pos == 0)
break;
const SplitTry &splitTry = splits[pos].possibleSplits[splitPoint];
splitPoint = splitTry.prevSplitPoint;
--pos;
}
return penalty;
}
std::vector<ChordSplitData> findSplits(std::multimap<ReducedFraction, MidiChord> &chords)
{
std::vector<ChordSplitData> splits;
int pos = 0;
ReducedFraction maxChordLen;
for (auto it = chords.begin(); it != chords.end(); ++it) {
const auto ¬es = it->second.notes;
Q_ASSERT_X(!notes.isEmpty(),
"LRHand::findSplits", "Notes are empty");
Q_ASSERT_X(areNotesSortedByPitchInAscOrder(notes),
"LRHand::findSplits",
"Notes are not sorted by pitch in ascending order");
const auto len = MChord::maxNoteOffTime(notes) - it->first;
if (len > maxChordLen)
maxChordLen = len;
ChordSplitData split;
split.chord = it;
for (int splitPoint = 0; splitPoint <= notes.size(); ++splitPoint) {
SplitTry splitTry;
splitTry.penalty = findPitchWidthPenalty(notes, splitPoint)
+ findDurationPenalty(notes, splitPoint)
+ findNoteCountPenalty(notes, splitPoint);
if (pos > 0) {
int bestPrevSplitPoint = -1;
int minPenalty = std::numeric_limits<int>::max();
const auto &prevNotes = std::prev(it)->second.notes;
for (int prevSplitPoint = 0;
prevSplitPoint <= prevNotes.size(); ++prevSplitPoint) {
const int prevPenalty
= splits[pos - 1].possibleSplits[prevSplitPoint].penalty
+ findSimilarityPenalty(
notes, prevNotes, splitPoint, prevSplitPoint)
+ findIntersectionPenalty(
it->first, pos - 1, prevSplitPoint,
maxChordLen, splits,
splitPoint > 0, splitPoint < notes.size());
if (prevPenalty < minPenalty) {
minPenalty = prevPenalty;
bestPrevSplitPoint = prevSplitPoint;
}
}
Q_ASSERT_X(bestPrevSplitPoint != -1,
"LRHand::findSplits",
"Best previous split point was not found");
splitTry.penalty += minPenalty;
splitTry.prevSplitPoint = bestPrevSplitPoint;
}
split.possibleSplits.push_back(splitTry);
}
splits.push_back(split);
++pos;
}
return splits;
}
void insertNewLeftHandTrack(std::multimap<int, MTrack> &tracks,
std::multimap<int, MTrack>::iterator &it,
const std::multimap<ReducedFraction, MidiChord> &leftHandChords)
{
auto leftHandTrack = it->second;
leftHandTrack.chords = leftHandChords;
it = tracks.insert({it->first, leftHandTrack});
}
// maybe todo later: if range of right-hand chords > OCTAVE
// => assign all bottom right-hand chords to another, third track
void splitStaff(std::multimap<int, MTrack> &tracks, std::multimap<int, MTrack>::iterator &it)
{
auto &chords = it->second.chords;
if (chords.empty())
return;
MChord::sortNotesByPitch(chords);
std::vector<ChordSplitData> splits = findSplits(chords);
Q_ASSERT_X(!splits.empty(), "LRHand::splitStaff", "Empty splits array");
std::multimap<ReducedFraction, MidiChord> leftHandChords;
splitChords(splits, leftHandChords, chords);
if (!leftHandChords.empty())
insertNewLeftHandTrack(tracks, it, leftHandChords);
}
void addNewLeftHandChord(std::multimap<ReducedFraction, MidiChord> &leftHandChords,
const QList<MidiNote> &leftHandNotes,
const std::multimap<ReducedFraction, MidiChord>::iterator &it)
{
MidiChord leftHandChord = it->second;
leftHandChord.notes = leftHandNotes;
leftHandChords.insert({it->first, leftHandChord});
}
void splitIntoLeftRightHands(std::multimap<int, MTrack> &tracks)
{
for (auto it = tracks.begin(); it != tracks.end(); ++it) {
if (it->second.mtrack->drumTrack() || it->second.chords.empty())
continue;
const auto &opers = preferences.midiImportOperations.data()->trackOpers;
// iterator 'it' will change after track split to ++it
// C++11 guarantees that newely inserted item with equal key will go after:
// "The relative ordering of elements with equivalent keys is preserved,
// and newly inserted elements follow those with equivalent keys
// already in the container"
if (opers.doStaffSplit.value(it->second.indexOfOperation))
splitStaff(tracks, it);
}
}
} // namespace LRHand
} // namespace Ms
|