1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
|
//=============================================================================
// MuseScore
// Music Composition & Notation
//
// Copyright (C) 2007-2011 Werner Schweer
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License version 2
// as published by the Free Software Foundation and appearing in
// the file LICENCE.GPL
//=============================================================================
//=============================================================================
// Keyfinder.cpp uses code from the "Melisma Music Analyzer"
// project:
//
// Copyright (C) 2000 Daniel Sleator and David Temperley
// See http://www.link.cs.cmu.edu/music-analysis
// for information about commercial use of this system
//=============================================================================
/* _Important comment about how pitches and keys are represented_
Notes may be inputted in either Note format (with just a pitch) or
TPCNote format (with a TPC). The user may also specify
"npc_or_tpc_profile": 0 for npc, 1 for tpc. (A TPC profile is like
an NPC profile except that a user-settable default value is used for
TPC's outside the range of b2 to #4.) We assume that Note format
will be used with an npc profile; if not, a fatal error is
reported. TPCNote format could be used with either; if you use
TPCNote input with an npc profile, the notes are simply mapped on to
one cycle of the LOF. (Scoring mode 0 or 3 requires an npc profile;
otherwise a fatal error is reported.)
Pitches (e.g. note[].tpc values) are always represented in
line-of-fifths order, with C = 14. (This is done when the pitches
are first read in). (If there's Note input, or TPCNote input and
npc_or_tpc_profile = 0, all pitches are shifted into one cycle of
the line of fifths, from 9 to 20 inclusive; again, this is done when
the input is read.)
Keys are also represented in line-of-fifths order. Major keys are 0
to 27, C=14; minor keys are 28-55, C minor = 42. If
npc_or_tpc_profile = 0, the search is nominally done on all keys,
but only keys from 9 to 20 (inclusive) and 37 to 48 (inclusive) are
looked at; others are given large negative values.
Although key-profiles are read in in pitch-height order, they are
then adjusted (in generate_tpc/npc_profiles) to line-of-fifths
order, with the tonic as 5. */
#include <string.h>
#include <math.h>
#include "keyfinder.h"
#include "sig.h"
#include "pitchspelling.h"
#include "synthesizer/event.h"
namespace Ms {
#if 0
//---------------------------------------------------------
// SBeat
//---------------------------------------------------------
struct SBeat {
int time;
};
//---------------------------------------------------------
// MidiSegment
//---------------------------------------------------------
struct MidiSegment {
int start;
int end;
QList<Event> snote;
int numnotes; // number of notes in the segment
qreal average_dur; // average input vector value (needed for K-S algorithm)
};
#define CHANGE_PENALTY 12
static float change_penalty = CHANGE_PENALTY;
static int npc_or_tpc_profile = 1;
static int scoring_mode = 1;
static int verbosity = 1;
static qreal major_profile[12] = {5.0, 2.0, 3.5, 2.0, 4.5, 4.0, 2.0, 4.5, 2.0, 3.5, 1.5, 4.0};
static qreal minor_profile[12] = {5.0, 2.0, 3.5, 4.5, 2.0, 4.0, 2.0, 4.5, 3.5, 2.0, 1.5, 4.0};
static qreal default_profile_value=1.5;
/*
CBMS profiles:
major_profile = 5.0 2.0 3.5 2.0 4.5 4.0 2.0 4.5 2.0 3.5 1.5 4.0
minor_profile = 5.0 2.0 3.5 4.5 2.0 4.0 2.0 4.5 3.5 2.0 1.5 4.0
Bayesian profiles (based on frequencies in Kostka-Payne corpus):
major_profile = 0.748 0.060 0.488 0.082 0.670 0.460 0.096 0.715 0.104 0.366 0.057 0.400
minor_profile = 0.712 0.084 0.474 0.618 0.049 0.460 0.105 0.747 0.404 0.067 0.133 0.330
Krumhansl's profiles:
major_profile = 6.35 2.23 3.48 2.33 4.38 4.09 2.52 5.19 2.39 3.66 2.29 2.88
minor_profile = 6.33 2.68 3.52 5.38 2.60 3.53 2.54 4.75 3.98 2.69 3.34 3.17
Krumhansl's minor, normalized: 5.94 2.51 3.30 5.05 2.44 3.31 2.38 4.46 3.73 2.52 3.13 2.97
*/
static int firstbeat;
static QList<Event> note;
static QList<MidiSegment> segment; // An array storing the notes in each segment
static int segtotal; // total number of segments - 1
static qreal seglength;
static QList<int> seg_prof[28];
static QList<qreal> keyscore()[56];
static QList<SBeat> sbeat;
static QList<qreal> analysis[56][56];
static QList<int> best[56];
static QList<int> final;
// static int numnotes, numchords, num_sbeats;
static int num_sbeats;
static QList<int> pc_tally;
static QList<qreal> finalscore();
static qreal key_profile[56][28];
static int final_timepoint;
//---------------------------------------------------------
// print_keyname
//---------------------------------------------------------
static void print_keyname(int f)
{
static const char letter[] = "CGDAEBF";
int mf = f % 27;
mf -= 14;
qDebug("(%d,%d)%c", f, mf, letter[f % 7]);
if (f < 6 || (f >= 28 && f < 34))
qDebug("-");
if ((f >= 6 && f < 13) || (f >= 34 && f < 41))
qDebug("b");
if ((f >= 20 && f < 27) || (f >=48 && f < 55))
qDebug("#");
if (f == 27 || f == 55)
qDebug("x");
if (f >= 28)
qDebug("m");
if (f < 28)
qDebug(" ");
qDebug(" ");
}
//---------------------------------------------------------
// create_segments
// Each segment starts at a sbeat and ends at the
// following sbeat
//---------------------------------------------------------
static void create_segments()
{
segment.append(MidiSegment());
segment[0].start = firstbeat; // Always start a segment at the very beginning of the piece (the first beat)
for (int b = 0; b < num_sbeats; b++) {
if (b == 0 && (sbeat[0].time - firstbeat) < ((sbeat[1].time-firstbeat) - (sbeat[0].time-firstbeat))/2)
continue;
/* If it's the first beat of the piece, and the upbeat is
less than half of the first beat interval, don't start a segment
*/
else {
MidiSegment seg;
seg.start = sbeat[b].time;
segment.back().end = sbeat[b].time;
segment.append(seg);
}
}
int s = segment.size() - 1;
/* If final segment starts at or after final timepoint of piece, ignore it,
decrementing number of segments by 1; if not, set that segment's ending
to final timepoint of piece
*/
if (segment[s].start >= final_timepoint) {
s--;
}
else {
segment[s].end = final_timepoint;
/* qDebug("Final segment ends at %d", segment[s].end); */
}
segtotal = s; // index of final segment
}
//---------------------------------------------------------
// fill_segments
//---------------------------------------------------------
static void fill_segments()
{
for (int s = 0; s < segment.size(); ++s) {
foreach (const Event& n, note) {
int ontime = n.ontime();
int offtime = n.offtime();
int start = segment[s].start;
int end = segment[s].end;
if (ontime >= start && ontime < end && offtime <= end) {
// note begins and ends in segment
Event sn(ME_NOTE);
sn.setDataA(n.dataA());
sn.setTpc(n.tpc());
sn.setDuration(n.duration());
segment[s].snote.append(sn);
}
if (ontime >= start && ontime < end && offtime > end) {
// note begins, doesn't end in segment
Event sn(ME_NOTE);
sn.setDataA(n.dataA());
sn.setTpc(n.tpc());
sn.setDuration(end - ontime);
segment[s].snote.append(sn);
}
if (ontime < start && offtime > start && offtime <= end) {
// note ends, doesn't begin in segment
Event sn(ME_NOTE);
sn.setDataA(n.dataA());
sn.setTpc(n.tpc());
sn.setDuration(offtime - start);
segment[s].snote.append(sn);
}
if (ontime < start && offtime > end) {
// note doesn't begin or end in segment
Event sn(ME_NOTE);
sn.setDataA(n.dataA());
sn.setTpc(n.tpc());
sn.setDuration(end - start);
segment[s].snote.append(sn);
}
}
segment[s].numnotes = segment[s].snote.size();
// qDebug("fillSegments %d: %d-%d %d", s, segment[s].start,
// segment[s].end, segment[s].numnotes);
}
}
//---------------------------------------------------------
// count_segment_notes
// In each segment, tally up the notes of each TPC
//---------------------------------------------------------
static void count_segment_notes()
{
for (int s = 0; s <= segtotal; ++s) {
pc_tally[s] = 0;
for (int y = 0; y < 28; ++y) // cycle through the pc's, make sure all the seg_prof values are zero
seg_prof[y].append(0);
qreal total_dur = 0;
for (int n = 0; n < segment[s].numnotes; ++n) {
if (scoring_mode == 0)
total_dur += segment[s].snote[n].duration();
for (int y=0; y<28; ++y) {
if (segment[s].snote[n].tpc() == y) {
if(seg_prof[y][s]==0)
pc_tally[s]++;
/* This keeps track of how many different pc's the segment contains. This counts TPCs, not NPCs! */
/* If scoring_mode is > 1, set array value to 1. If 0, add the note's duration to the
array value (as in the K-S algorithm) */
if (scoring_mode > 0)
seg_prof[y][s] = 1;
else {
seg_prof[y][s] += segment[s].snote[n].duration();
}
}
}
}
if(scoring_mode == 0) {
if(pc_tally[s]==0)
segment[s].average_dur = 0.0;
segment[s].average_dur = total_dur / 12.0;
/* qDebug("Segment %d total dur = %6.3f, average dur = %6.3f", s, total_dur, segment[s].average_dur); */
}
if (verbosity>=2) {
qDebug("Segment %d: ", s);
for (int y=0; y<28; ++y) {
if(npc_or_tpc_profile == 0 && (y<9 || y>20))
continue;
qDebug("%d ", seg_prof[y][s]);
}
}
/* qDebug("pc_tally = %d", pc_tally[s]); */
}
}
//---------------------------------------------------------
// prepare_profiles
// We're only here if scoring_mode is 0 (the K-S algorithm).
// Sum all the profile values, take the mean,
// and subtract that from each value
//---------------------------------------------------------
static void prepare_profiles()
{
qreal total = 0.0;
for (int i = 0; i < 12; i++) {
total += major_profile[i];
}
qreal average = total / 12.0;
for (int i = 0; i < 12; i++)
major_profile[i]=major_profile[i] - average;
total = 0;
for (int i = 0; i < 12; i++) {
total += minor_profile[i];
}
average = total / 12.0;
for (int i = 0; i < 12; i++)
minor_profile[i] = minor_profile[i] - average;
if (verbosity > 2) {
qDebug("Adjusted major profile: ");
for(int i = 0; i < 12; i++)
qDebug("%6.3f ", major_profile[i]);
qDebug("Adjusted minor profile: ");
for (int i = 0; i < 12; i++)
qDebug("%6.3f ", minor_profile[i]);
}
}
/* Here we generate the key profiles. (This is assuming tpc input.) Key_profile[key] numbers correspond to
the line of fifths, with C = 14. Major keys are 0-27, minor keys are 28-55. PCs are also numbered
according to the line of fifths. The major_step_profile has the tonic in step 5. For a given key, the
profile value for a given tpc is equal to the line of fifths difference between the tpc and the key, plus
5. */
//---------------------------------------------------------
// generate_tpc_profiles
//---------------------------------------------------------
static void generate_tpc_profiles()
{
int key, shift, tpc, i;
float majp[12];
float minp[12];
/* First we rearrange the key profile values (inputted in pitch height order) into lof order, C = 5 */
for(i=0; i<12; i++) {
majp[((((i * 7) % 12) + 5) % 12)] = major_profile[i];
minp[((((i * 7) % 12) + 5) % 12)] = minor_profile[i];
}
for (key=0, shift=0; key<28; ++key, ++shift) {
for (tpc=0; tpc<28; ++tpc) {
if (tpc-shift >= -5 && tpc-shift <= 6) {
key_profile[key][tpc] = majp[5 + (tpc-shift)]; /* For example: for key 14 (C major) and tpc 17 (A),
use profile step 5 + (17-14) = 8 */
}
if (tpc-shift < -5 || tpc-shift > 6) {
key_profile[key][tpc] = default_profile_value;
}
}
}
for (key=28, shift=0; key<56; ++key, ++shift) {
for (tpc=0; tpc<28; ++tpc) {
if (tpc-shift >= -5 && tpc-shift <= 6 ) {
key_profile[key][tpc] = minp[5 + (tpc-shift)];
}
if (tpc-shift < -5 || tpc-shift > 6) {
key_profile[key][tpc] = default_profile_value;
}
}
}
/*
This routine just prints out the key profiles
for(key=0; key<56; ++key) {
for(tpc=0; tpc<28; ++tpc) {
qDebug("%1.2f ", key_profile[key][tpc]);
}
}
*/
}
//-----------------------------------------------------------------------------
// generate_npc_profiles
// This is an alternative function for generating profiles given NPC
// profile. It's similar to the TPC version, except that only keys on
// a certain range of the line are assigned non-zero values. (This is
// really an unnecessary step, as steps outside the range will be
// disqualified in "match_profiles" in any case.) Also, for those keys
// considered, only key profile slots within the 9-to-20 range are
// assigned non-zero values. (This is necessary, since the input profile
// is within this range as well.) We begin by assigning default values
// of ZERO to everything.
//-----------------------------------------------------------------------------
static void generate_npc_profiles()
{
int key, shift, tpc, tpc_to_use, i;
float majp[12];
float minp[12];
/* First we rearrange the key profile values (inputted in pitch height order) into lof order, C = 5 */
for(i=0; i<12; i++) {
majp[((((i * 7) % 12) + 5) % 12)] = major_profile[i];
minp[((((i * 7) % 12) + 5) % 12)] = minor_profile[i];
}
for (key=0; key<56; ++key) {
for(tpc=0; tpc<28; ++tpc) {
key_profile[key][tpc]=0;
}
}
for (key=9, shift=9; key<21; ++key, ++shift) {
for (tpc=0; tpc<28; ++tpc) {
/* tpc_to_use is the profile slot to use for a given value of the key-profile. In this way we keep
all profile slots within the 9-to-20 range
*/
if(tpc<9)
tpc_to_use=tpc+12;
else if(tpc>20)
tpc_to_use=tpc-12;
else
tpc_to_use = tpc;
if (tpc-shift >= -5 && tpc-shift <= 6) {
/* For example: for key 14 (C major) and tpc 17 (A),
read from profile step 5 + (17-14) = 8. For degree
6 of B major (key 19), degree 6 (22) is outside the
9-to-20 range, so tpc_to_use is 22-12=10; still
read from profile step 5 + (22-19) = 8. */
key_profile[key][tpc_to_use] = majp[5 + (tpc-shift)];
}
}
}
for (key = 37, shift = 9; key < 49; ++key, ++shift) {
for (tpc = 0; tpc < 28; ++tpc) {
if (tpc<9)
tpc_to_use = tpc + 12;
else if (tpc > 20)
tpc_to_use = tpc - 12;
else
tpc_to_use = tpc;
if (tpc - shift >= -5 && tpc - shift <= 6 ) {
key_profile[key][tpc_to_use] = minp[5 + (tpc-shift)];
}
}
}
/*
for(key = 0; key < 56; ++key) {
for(tpc=0; tpc<28; ++tpc) {
qDebug("%1.2f ", key_profile[key][tpc]);
}
}
*/
}
//---------------------------------------------------------
// match_profiles
// Here we generate the "key scores" - the local score for each key
//
// Notice that we generate profiles for all 56 keys and all 28
// tpc's, even in the case where npc profiles are being used. In
// this case, though, all keys outside the allowable NPC range are
// given large negative values. And within both the key profiles
// and the segment profiles, only TPC's within the range 9 to 20
// have been given nonzero values.
//---------------------------------------------------------
static void match_profiles()
{
int key, tpc, s, best_key, i;
qreal major_sumsq, minor_sumsq, input_sumsq;
qreal kprob[56];
for (key = 0; key < 56; ++key) {
for (s = 0; s <= segtotal; ++s)
keyscore()[key].append(0.0);
}
if (scoring_mode==0) {
major_sumsq = 0.0;
minor_sumsq = 0.0;
for(i=0; i<12; i++)
major_sumsq += major_profile[i]*major_profile[i];
for(i=0; i<12; i++)
minor_sumsq += minor_profile[i]*minor_profile[i];
if (verbosity==3)
qDebug("major_sumsq = %6.3f, minor_sumsq = %6.3f", major_sumsq, minor_sumsq);
}
qreal total_prob[segtotal + 1];
for (s = 0; s <= segtotal; ++s) {
if (scoring_mode==0) {
input_sumsq = 0.0;
for (i = 9; i <= 20; i++) {
input_sumsq += pow((seg_prof[i][s]-segment[s].average_dur), 2.0);
/* qDebug("%d X %6.3f squared is %6.3f", seg_prof[i][s], segment[s].average_dur, pow((seg_prof[i][s]-segment[s].average_dur), 2.0)); */
}
if (verbosity==3)
qDebug("For segment %d: average_dur = %6.3f; input_sumsq = %6.3f", s, segment[s].average_dur, input_sumsq);
}
best_key=0;
for (key=0; key<56; ++key) {
kprob[key] = 0.0;
keyscore()[key][s] = -1000000.0;
if (npc_or_tpc_profile==0 && (key<9 || (key>20 && key<37) || key>48))
continue;
kprob[key] = 1.0;
keyscore()[key][s] = 0.0;
for (tpc=0; tpc<28; ++tpc) {
/*
If scoring mode is 0, this is the K-S algorithm (this works for npc mode only). Segment
profile values represent total duration of each pc (in all other cases, they're just 1
for present pc's and 0 for absent ones). Key-profiles have been normalized linearly
around the average key-profile value. We normalize the input values similarly by taking
(seg_prof[tpc][s]-segment[s].average_dur). Then we multiply each normalized KP value by
the normalized input value, and sum these products; this gives us the numerator of the
correlation expression (as commented below). We've summed the squares of the normalized
key-profile value (major_sumsq and minor_sumsq above) and the normalized input values
(input_sumsq above), so this allows us to calculate the denominator also.
If scoring_mode is 1, the key score is the sum of key-profile values for all pc's present
(this is the algorithm used in CBMS)
If scoring_mode is 2, calculate key scores as above, but divide each one by the number
of pc's in the segment
If scoring_mode is 3: for each key, add the log of the key-profile value for all present pc's;
subtract values for all absent pc's. (This is the Bayesian approach; assume key-profiles
represent pc distribution's in a corpus, i.e. the number of segments containing each scale
degree)
*/
if(scoring_mode == 0) {
if(tpc<9 || tpc>20)
continue;
/* calculate numerator */
keyscore()[key][s] += key_profile[key][tpc] * (seg_prof[tpc][s]-segment[s].average_dur);
/* qDebug("x-X=%6.3f, y-Y=%6.3f, product=%6.3f, new total=%6.3f", key_profile[key][tpc], seg_prof[tpc][s]-segment[s].average_dur, key_profile[key][tpc] * (seg_prof[tpc][s]-segment[s].average_dur), keyscore()[key][s]); */
}
if(scoring_mode==1 || scoring_mode==2)
keyscore()[key][s] += (key_profile[key][tpc] * seg_prof[tpc][s]);
if(scoring_mode == 3) {
/* if(tpc>11) continue; */
/* if(tpc<9 || tpc>20) continue; */
if(seg_prof[tpc][s]==0) {
keyscore()[key][s] += log(1.000 - key_profile[key][tpc]);
/* qDebug("kp value = %6.3f: log(1-p) = %6.3f: score = %6.3f", key_profile[key][tpc], log(1.000 - key_profile[key][tpc]), keyscore()[key][s]); */
if(tpc>=9 && tpc<=20)
kprob[key] *= (1.000 - key_profile[key][tpc]);
}
else {
keyscore()[key][s] += log(key_profile[key][tpc]);
if(tpc>=9 && tpc<=20)
kprob[key] *= key_profile[key][tpc];
}
/* qDebug("kp value = %6.3f: log(p) = %6.3f: score = %6.3f", key_profile[key][tpc], log(key_profile[key][tpc]), keyscore()[key][s]); */
}
}
if(scoring_mode == 0) {
/* qDebug("sqrt(major_sumsq * input_sumsq) = %6.3f", sqrt(major_sumsq * input_sumsq)); */
/* calculate denominator */
if(key<28)
keyscore()[key][s] = keyscore()[key][s] / sqrt(major_sumsq * input_sumsq);
else
keyscore()[key][s] = keyscore()[key][s] / sqrt(minor_sumsq * input_sumsq);
}
if(scoring_mode == 2) {
if(pc_tally[s] == 0)
keyscore()[key][s] = 0;
else
keyscore()[key][s] = keyscore()[key][s] / pc_tally[s];
}
/* if(s==0) qDebug("local score for key %d on segment %d: %6.3f", key, s, keyscore()[key][s]); */
if (keyscore()[key][s] > keyscore()[best_key][s])
best_key = key;
}
if(verbosity>=2) {
qDebug("The best local key for segment %d at time %d is ", s, segment[s].start);
print_keyname(best_key);
qDebug("with score %6.3f", keyscore()[best_key][s]);
}
if(scoring_mode==3) {
total_prob[s]=0.0;
for(key=0; key<56; key++) {
total_prob[s] += kprob[key] / 24.0;
/* qDebug(" Prob of segment %d given key %d: %6.8f", s, key, kprob[key]); */
}
/* Now total_prob[s] is the total probability of the segment occurring: its probability given
a key, summed over all keys. But suppose we want to know the probability of ANY major triad
occurring? Then we have to multiply this by 12. (But not for something like a diminished
seventh which is symmetrical! */
if (verbosity>=3) {
qDebug("Best key for segment %d = %d, score = %6.8f", s, best_key, kprob[best_key]);
qDebug("Total (local) probability of segment %d: %6.8f", s, total_prob[s]);
}
}
}
}
//---------------------------------------------------------
// choose_best_i
//---------------------------------------------------------
static void choose_best_i(int seg)
{
for (int j = 0; j < 56; ++j) {
int k = 0;
for (int i = 0; i < 56; ++i) {
if (analysis[i][j][seg] > analysis[k][j][seg])
k=i;
}
/* For a given segment seg, and the key j at that segment,
the best previous key is k
*/
int size = best[j].size();
for (int i = size; i < seg+1; ++i)
best[j].append(0);
best[j][seg] = k;
/* qDebug("For segment-%d-key %d, best segment-%d-key is %d, with score %d", seg, j, seg-1, k, analysis[k][j][seg]); */
}
}
//---------------------------------------------------------
// make_first_table
//---------------------------------------------------------
static void make_first_table(int seg)
{
int i, j, s;
qreal seg_factor, mod_factor, nomod_factor;
if (scoring_mode==3) {
mod_factor = log(change_penalty);
nomod_factor = log(1.0 - change_penalty);
seg_factor = 1.0;
}
else {
mod_factor = -change_penalty;
nomod_factor = 0.0;
seg_factor = seglength;
}
for(s = 0; s <= segtotal; s++) {
for(i = 0; i < 56; ++i) {
for(j = 0; j < 56; ++j)
analysis[i][j].append(-1000.0);
}
}
for(i = 0; i < 56; ++i) {
for(j = 0; j < 56; ++j) {
if (j != i)
analysis[i][j][1] = ((keyscore()[i][0] + keyscore()[j][1]) * seg_factor) + mod_factor;
else
analysis[i][j][1] = ((keyscore()[i][0] + keyscore()[j][1]) * seg_factor) + nomod_factor;
}
}
choose_best_i(seg);
}
//---------------------------------------------------------
// make_tables
//---------------------------------------------------------
static void make_tables()
{
qreal seg_factor, mod_factor, nomod_factor;
/* When scoring_mode = 3, the change_penalty represents the probability of changing key. So raising
the penalty actually _increases_ the likelihood of modulations. */
if (scoring_mode == 3) {
mod_factor = log(change_penalty / 23.0);
nomod_factor = log(1.0 - change_penalty);
seg_factor = 1.0;
}
else {
mod_factor = -change_penalty;
nomod_factor = 0.0;
seg_factor = seglength;
}
for (int seg = 2; seg <= segtotal; ++seg) {
/* qDebug("mod_factor = %6.6f; ; nomod_factor = %6.6f", mod_factor, nomod_factor); */
for(int j = 0; j < 56; ++j) {
for(int i = 0; i < 56; ++i) {
int n = best[i][seg-1];
if (j != i)
analysis[i][j][seg] = analysis[n][i][seg-1] + (keyscore()[j][seg] * seg_factor) + mod_factor;
else
analysis[i][j][seg] = analysis[n][i][seg-1] + (keyscore()[j][seg] * seg_factor) + nomod_factor;
}
}
choose_best_i(seg);
}
}
//---------------------------------------------------------
// best_key_analysis
//---------------------------------------------------------
static void best_key_analysis()
{
int n, m, f, tie1=-1, tie2=-1;
int s = segtotal;
int k = 0;
for(int j = 0; j < 56; ++j) {
n = best[j][s];
m = best[k][s];
if (analysis[n][j][s] < analysis[m][k][s] + .001 && analysis[n][j][s] > analysis[m][k][s] - .001 && j!=k) {
tie1=j;
tie2=k;
}
if (verbosity>1 && !(npc_or_tpc_profile == 0 && (j<9 || (j>20 && j<37) || j>48))) {
qDebug("Final score for ");
print_keyname(j);
/* qDebug("is %6.3f", analysis[n][j][s] * 1000 / (segment[segtotal].end - segment[0].start)); */
qDebug("is %6.3f", analysis[n][j][s]);
}
if (analysis[n][j][s] > analysis[m][k][s] + .000001) {
/* The .000001 is to fix a strange bug: sometimes it thinks the conditional is satisfied in the case of ties */
k = j; /* compute best key of final segment */
}
}
// To force a key choice at the final segment, insert key number here
final[s] = k;
if (verbosity > 1)
if (k==tie1 || k==tie2)
qDebug("Tie at the end between %d and %d", tie1, tie2);
// Here's where we take the best key choices and put them into final[s]
for(s = segtotal; s >= 1; --s) {
final[s-1] = best[k][s];
k = final[s-1];
}
if (verbosity >= 2) {
qDebug("Segment 0: key choice %d; total score %6.3f; segment score %6.3f", final[0], keyscore()[final[0]][0],
keyscore()[final[0]][0]);
qDebug("Segment 1: key choice %d; total score %6.3f; segment score %6.3f", final[1], analysis[final[0]][final[1]][1], analysis[final[0]][final[1]][1] - keyscore()[final[0]][0]);
for(s = 2; s <= segtotal; s++) {
qDebug("Segment %d: key choice %d; total score %6.3f; segment score %6.3f", s, final[s], analysis[final[s-1]][final[s]][s], analysis[final[s-1]][final[s]][s] - analysis[final[s-2]][final[s-1]][s-1]);
}
}
if (verbosity > 1)
qDebug("'Key-fit' scores for preferred analysis:");
/* This routine calculates the key-fit scores for the final analysis. These are really per-second scores.
Key-profile scores are not multiplied by seglength (as they would be in actually computing the analyses);
change penalties are divided by seglength. */
for (s = 0; s <= segtotal; ++s) {
f = final[s];
if (s > 0 && final[s] != final[s-1])
finalscore()[s] = (keyscore()[f][s]) - (change_penalty / seglength);
else
finalscore()[s]=keyscore()[f][s];
if (verbosity > 1) {
qDebug(" segment %d: %6.3f", s, finalscore()[s]);
}
}
}
//---------------------------------------------------------
// findKey
//---------------------------------------------------------
int findKey(MidiTrack* mt, TimeSigMap* sigmap)
{
int tpc_found, npc_found;
if ((scoring_mode == 0 || scoring_mode == 3) && npc_or_tpc_profile == 1) {
qDebug("Error: scoring mode %d requires an npc profile", scoring_mode);
exit(1);
}
final_timepoint=0;
tpc_found = 0;
npc_found = 0;
int lastTick = 0;
const EventList el = mt->events();
foreach (Event e, el) {
if (e.type() != ME_NOTE)
continue;
if (e.offtime() > lastTick)
lastTick = e.offtime();
// For note input, generate TPC labels within the 9-to-20 range
e.setTpc((((((e.pitch() % 12) * 7) % 12) + 5) % 12) + 9);
note.append(e);
}
spell(note, 0);
npc_found = 1;
// create one segment for every measure
for (int i = 0;; ++i) {
int tick = sigmap->bar2tick(i, 0, 0);
SBeat b;
b.time = tick;
sbeat.append(b);
if (tick > lastTick)
break;
}
firstbeat = sbeat.first().time;
final_timepoint = sbeat.last().time;
num_sbeats = sbeat.size();
numnotes = note.size();
numchords = 0;
if (note.empty()) {
qDebug("Error: No notes in input.");
return 0;
}
seglength = (sbeat[1].time - sbeat[0].time) / 1000.0; /* define segment length as the length of the first segment */
if (verbosity > 1)
qDebug("seglength = %3.3f", seglength);
create_segments();
for (int i = 0; i < segtotal+1; ++i) {
final.append(0);
pc_tally.append(0);
finalscore().append(0.0);
}
fill_segments();
count_segment_notes();
if (scoring_mode==0)
prepare_profiles();
if (npc_or_tpc_profile == 1)
generate_tpc_profiles();
else
generate_npc_profiles();
match_profiles();
if (segtotal > 0) {
make_first_table(1);
make_tables();
best_key_analysis();
}
QList<int> keys;
for (int i = 0; i < 27; ++i)
keys.append(0);
for (int i = 0; i <= segtotal; ++i) {
keys[final[i] % 27]++; // fold major/minor
// qDebug("key %d: %d %d", i, final[i], (final[i] % 27) - 14);
}
int xkey = 0;
int xcount = 0;
for (int i = 0; i < 27; ++i) {
if (keys[i] > xcount) {
xcount = keys[i];
xkey = i;
}
}
xkey -= 14;
if (xkey < -7 || xkey > 7) {
qDebug("findKey(): illegal key %d found", xkey);
xkey = 0;
}
spell(note, xkey); // spell again with found key
//
// clear all arrays
//
note.clear();
segment.clear();
sbeat.clear();
for (int i = 0; i < 28; ++i)
seg_prof[i].clear();
for (int i = 0; i < 56; ++i) {
keyscore()[i].clear();
best[i].clear();
for (int k = 0; k < 56; ++k)
analysis[i][k].clear();
}
final.clear();
pc_tally.clear();
finalscore().clear();
return xkey;
}
#endif
}
|