File: voice.cpp

package info (click to toggle)
musescore3 3.2.3%2Bdfsg2-11
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 210,672 kB
  • sloc: cpp: 291,093; xml: 200,238; sh: 3,779; ansic: 1,447; python: 393; makefile: 240; perl: 82; pascal: 79
file content (341 lines) | stat: -rw-r--r-- 13,127 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
//=============================================================================
//  Zerberus
//  Zample player
//
//  Copyright (C) 2013 Werner Schweer
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License version 2
//  as published by the Free Software Foundation and appearing in
//  the file LICENCE.GPL
//=============================================================================

#include <stdio.h>

#include "voice.h"
#include "instrument.h"
#include "channel.h"
#include "zerberus.h"
#include "zone.h"
#include "sample.h"
#include "synthesizer/msynthesizer.h"

float Envelope::egPow[EG_SIZE];
float Envelope::egLin[EG_SIZE];

static const char* voiceStateNames[] = {
      "OFF", "ATTACK", "PLAYING", "SUSTAINED", "STOP"
      };

//---------------------------------------------------------
//   setTime
//---------------------------------------------------------

void Envelope::setTime(float ms, int sampleRate)
      {
      val   = 1.0;
      if (ms < 0.0f)
            ms = 0.0f;
      steps = int(ms * sampleRate / 1000);
      count = steps;
      }

//---------------------------------------------------------
//   Voice
//---------------------------------------------------------

Voice::Voice(Zerberus* z)
      {
      _zerberus = z;
      }

//---------------------------------------------------------
//   stop
//---------------------------------------------------------

void Voice::stop(float time)
      {
      _state = VoiceState::STOP;
      envelopes[V1Envelopes::RELEASE].setTime(time, _zerberus->sampleRate());
      envelopes[currentEnvelope].step();
      envelopes[V1Envelopes::RELEASE].max = envelopes[currentEnvelope].val;
      currentEnvelope = V1Envelopes::RELEASE;
      }

//---------------------------------------------------------
//   init
//---------------------------------------------------------

void Voice::init()
      {
      // Initialize the coefficients for the interpolation. The math comes
      // from a mail, posted by Olli Niemitalo to the music-dsp mailing
      // list (I found it in the music-dsp archives
      // http://www.smartelectronix.com/musicdsp/).

      static const float MIN_GAIN = -80.0;
      static const float dbStep = MIN_GAIN / float(EG_SIZE);

      for (int i = 0; i < EG_SIZE; ++i) {
            Envelope::egPow[EG_SIZE-i-1] = pow(10.0, (dbStep * i)/20.0);
            Envelope::egLin[i]           = 1.0 - (double(i) / double(EG_SIZE));
            }

      }

//---------------------------------------------------------
//   start
//---------------------------------------------------------

void Voice::start(Channel* c, int key, int v, const Zone* zone, double durSinceNoteOn)
      {
      z = zone;
      _state    = VoiceState::ATTACK;
      //_state    = VoiceState::PLAYING;
      _channel  = c;
      _key      = key;
      _velocity = v;
      Sample* s = z->sample;
      audioChan = s->channel();
      data      = s->data() + z->offset * audioChan;
      //avoid processing sample if offset is bigger than sample length
      eidx      = std::max((s->frames() - z->offset - 1) * audioChan, 0ll);
      _loopMode = z->loopMode;
      _loopStart = z->loopStart;
      _loopEnd   = z->loopEnd;
      _samplesSinceStart = 0;

      _offMode  = z->offMode;
      _offBy    = z->offBy;

      trigger = z->trigger;

      float offset = -z->ampVeltrack;
      if (offset <= 0)
            offset += 100;
      if (trigger == Trigger::CC)
            _velocity = 127;
      float curve = _velocity * _velocity / (127.0 * 127.0);

      double rt_decay_value = 1.0;
      if (trigger == Trigger::RELEASE)
            rt_decay_value = pow(10, (-z->rtDecay * durSinceNoteOn)/20);
      // the .005 in this calculation is made up like this:
      //    -> (offset + z->ampVeltrack*curve) being a percent value so
      //       this should be divided by 100 or multiplied by 0.01
      //    -> afterwards 0.5 (-6dB) is applied to compensate possible coherent
      //       signals in a stereo output see http://www.sengpielaudio.com/calculator-coherentsources.htm
      //    -> 0.005 = 0.01 * 0.5
      gain        = (z->volume * z->group_volume * z->global_volume) * (offset + z->ampVeltrack * curve)
                    * .005 * c->gain() * rt_decay_value *
                    pow(10.0, 4.5 / 20.0); //attenuated volume between Fluid and Zerberus on 4.5dB

      phase.set(0);
      float sr = float(s->sampleRate()) / _zerberus->sampleRate();
      double targetcents = ((((key - z->keyBase) * z->pitchKeytrack) + z->keyBase) * 100.0) + z->tune;
      if (trigger == Trigger::CC)
            targetcents = z->keyBase * 100;
      phaseIncr.set(_zerberus->ct2hz(targetcents) * sr/_zerberus->ct2hz(z->keyBase * 100.0));

      filter.initialize(_zerberus, z, _velocity);

      currentEnvelope = V1Envelopes::DELAY;

      float velPercent = _velocity / 127.0;

      envelopes[V1Envelopes::DELAY].setTable(Envelope::egLin);
      envelopes[V1Envelopes::DELAY].setTime(z->ampegDelay + (z->ampegVel2Delay * velPercent) + z->delay, _zerberus->sampleRate());
      envelopes[V1Envelopes::DELAY].setConstant(0.0);

      envelopes[V1Envelopes::ATTACK].setTable(Envelope::egLin);
      envelopes[V1Envelopes::ATTACK].setVariable();
      envelopes[V1Envelopes::ATTACK].setTime(z->ampegAttack + (z->ampegVel2Attack * velPercent), _zerberus->sampleRate());
      envelopes[V1Envelopes::ATTACK].offset = z->ampegStart;

      envelopes[V1Envelopes::HOLD].setTable(Envelope::egLin);
      envelopes[V1Envelopes::HOLD].setTime(z->ampegHold + (z->ampegVel2Hold * velPercent), _zerberus->sampleRate());
      envelopes[V1Envelopes::HOLD].setConstant(1.0);

      envelopes[V1Envelopes::DECAY].setTable(Envelope::egPow);
      envelopes[V1Envelopes::DECAY].setVariable();
      envelopes[V1Envelopes::DECAY].setTime(z->ampegDecay + (z->ampegVel2Decay * velPercent), _zerberus->sampleRate());
      envelopes[V1Envelopes::DECAY].offset = z->ampegSustain;

      envelopes[V1Envelopes::SUSTAIN].setTable(Envelope::egLin);
      if (trigger == Trigger::RELEASE || trigger == Trigger::CC) {
            // Sample is played on noteoff. We need to stop the voice when it's done. Set the sustain duration accordingly.
            //in ZInstrument::readSample we create sample data array using frames*channels
            //so no need to devide by number of channels here, otherwise it reduces duration of samples by (Number of Channels)
            double sampleDur = ((double) z->sample->frames() / z->sample->sampleRate()) * 1000; // in ms
            double scaledSampleDur = sampleDur / (phaseIncr.data / 256.0);
            double sustainDur   = scaledSampleDur - (z->ampegDelay + z->ampegAttack + z->ampegHold + z->ampegDecay + z->ampegRelease + z->delay);
            envelopes[V1Envelopes::SUSTAIN].setTime(sustainDur, _zerberus->sampleRate());
            }
      else
            envelopes[V1Envelopes::SUSTAIN].setTime(std::numeric_limits<float>::infinity(), _zerberus->sampleRate());
      envelopes[V1Envelopes::SUSTAIN].setConstant(qBound(0.0f, z->ampegSustain + (z->ampegVel2Sustain * velPercent), 1.0f));

      envelopes[V1Envelopes::RELEASE].setTable(Envelope::egPow);
      envelopes[V1Envelopes::RELEASE].setVariable();
      envelopes[V1Envelopes::RELEASE].setTime(z->ampegRelease + (z->ampegVel2Release * velPercent), _zerberus->sampleRate());
      envelopes[V1Envelopes::RELEASE].max = envelopes[V1Envelopes::SUSTAIN].val;

      _looping = false;
      }

//---------------------------------------------------------
//   updateEnvelopes
//---------------------------------------------------------

void Voice::updateEnvelopes() {
      if (_state == VoiceState::ATTACK && trigger != Trigger::RELEASE) {
            while (envelopes[currentEnvelope].step() && currentEnvelope != V1Envelopes::SUSTAIN)
                  currentEnvelope++;

            // triggered by noteon enter virtually infinite sustain (play state)
            if (currentEnvelope == V1Envelopes::SUSTAIN)
                  _state = VoiceState::PLAYING;
            }
      else if (_state == VoiceState::ATTACK && trigger == Trigger::RELEASE) {
            while (envelopes[currentEnvelope].step() && currentEnvelope != V1Envelopes::RELEASE)
                  currentEnvelope++;

            // triggered by noteoff stop sample when entering release
            if (currentEnvelope == V1Envelopes::RELEASE)
                  _state = VoiceState::STOP;
            }
      else if (_state == VoiceState::STOP) {
            if (envelopes[V1Envelopes::RELEASE].step()) {
                  off();
                  }
            }
      }

//---------------------------------------------------------
//   process
//---------------------------------------------------------

void Voice::process(int frames, float* p)
      {
      filter.update();

      const float opcodePanLeftGain = 1.f - std::fmax(0.0f, z->pan / 100.0); //[0, 1]
      const float opcodePanRightGain = 1.f + std::fmin(0.0f, z->pan / 100.0); //[0, 1]
      const float leftChannelVol = gain * z->ccGain * _channel->panLeftGain() * opcodePanLeftGain;
      const float rightChannelVol = gain * z->ccGain * _channel->panRightGain() * opcodePanRightGain;
      if (audioChan == 1) {
            while (frames--) {

                  updateLoop();

                  long long idx = phase.index();

                  if (idx >= eidx) {
                        off();
                        break;
                        }

                  float interpVal = filter.interpolate(phase.fract(),
                                                       getData(idx-1), getData(idx), getData(idx+1), getData(idx+2));
                  float v = filter.apply(interpVal, true);

                  updateEnvelopes();
                  if (_state == VoiceState::OFF)
                        break;

                  *p++  += v * envelopes[currentEnvelope].val * leftChannelVol;
                  *p++  += v * envelopes[currentEnvelope].val * rightChannelVol;

                  if (V1Envelopes::DELAY != currentEnvelope)
                        phase += phaseIncr;

                  _samplesSinceStart++;
                  }
            }
      else {
            //
            // handle interleaved stereo samples
            //
            while (frames--) {

                  updateLoop();

                  long long idx = phase.index() * 2;
                  if (idx >= eidx) {
                        off();
//printf("end of sample\n");
                        break;
                        }

                  float interpValL = filter.interpolate(phase.fract(),
                                                       getData(idx-2), getData(idx), getData(idx+2), getData(idx+4));
                  float interpValR = filter.interpolate(phase.fract(),
                                                       getData(idx-1), getData(idx+1), getData(idx+3), getData(idx+5));
                  float valueL = filter.apply(interpValL, true);
                  float valueR = filter.apply(interpValR, false);

                  //apply volume
                  updateEnvelopes();
                  if (_state == VoiceState::OFF)
                        break;

                  *p++  += valueL * envelopes[currentEnvelope].val * leftChannelVol;
                  *p++  += valueR * envelopes[currentEnvelope].val * rightChannelVol;

                  if (V1Envelopes::DELAY != currentEnvelope)
                        phase += phaseIncr;

                  _samplesSinceStart++;
                  }
            }
      }

//---------------------------------------------------------
//   updateLoop
//---------------------------------------------------------

void Voice::updateLoop()
      {
      long long idx = phase.index();
      int loopOffset = (audioChan * 3) - 1; // offset due to interpolation
      bool validLoop = _loopEnd > 0 && _loopStart >= 0 && (_loopEnd <= (eidx/audioChan));
      bool shallLoop = loopMode() == LoopMode::CONTINUOUS || (loopMode() == LoopMode::SUSTAIN && (_state < VoiceState::STOP));

      if (!(validLoop && shallLoop)) {
            _looping = false;
            return;
            }

      if (idx + loopOffset > _loopEnd)
            _looping = true;
      if (idx > _loopEnd)
            phase.setIndex(_loopStart+(idx-_loopEnd-1));
      }

short Voice::getData(long long pos) {
      if (pos < 0 && !_looping)
            return 0;

      if (!_looping)
            return data[pos];

      long long loopEnd = _loopEnd * audioChan;
      long long loopStart = _loopStart * audioChan;

      if (pos < loopStart)
            return data[loopEnd + (pos - loopStart) + audioChan];
      else if (pos > (loopEnd + audioChan - 1))
            return data[loopStart + (pos - loopEnd) - audioChan];
      else
            return data[pos];
      }

//---------------------------------------------------------
//   state
//---------------------------------------------------------

const char* Voice::state() const
      {
      return voiceStateNames[int(_state)];
      }