1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Vamp feature extraction plugin for the BeatRoot beat tracker.
Centre for Digital Music, Queen Mary, University of London.
This file copyright 2011 Simon Dixon, Chris Cannam and QMUL.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "Induction.h"
#include "Agent.h"
#include "AgentList.h"
#include <vector>
#include <cmath>
double Induction::clusterWidth = 0.025;
double Induction::minIOI = 0.070;
double Induction::maxIOI = 2.500;
double Induction::minIBI = 0.3;
double Induction::maxIBI = 1.0;
int Induction::topN = 10;
AgentList Induction::beatInduction(const AgentParameters ¶ms,
const EventList &events)
{
int i, j, b, bestCount;
bool submult;
int intervals = 0; // number of interval clusters
std::vector<int> bestn; // count of high-scoring clusters
bestn.resize(topN);
double ratio, err;
int degree;
int maxClusterCount = (int) ceil((maxIOI - minIOI) / clusterWidth);
std::vector<double> clusterMean;
clusterMean.resize(maxClusterCount);
std::vector<int> clusterSize;
clusterSize.resize(maxClusterCount);
std::vector<int> clusterScore;
clusterScore.resize(maxClusterCount);
EventList::const_iterator ptr1, ptr2;
Event e1, e2;
ptr1 = events.begin();
while (ptr1 != events.end()) {
e1 = *ptr1;
++ptr1;
ptr2 = events.begin();
e2 = *ptr2;
++ptr2;
while (e2 != e1 && ptr2 != events.end()) {
e2 = *ptr2;
++ptr2;
}
while (ptr2 != events.end()) {
e2 = *ptr2;
++ptr2;
double ioi = e2.time - e1.time;
if (ioi < minIOI) // skip short intervals
continue;
if (ioi > maxIOI) // ioi too long
break;
for (b = 0; b < intervals; b++) // assign to nearest cluster
if (std::fabs(clusterMean[b] - ioi) < clusterWidth) {
if ((b < intervals - 1) && (std::fabs(clusterMean[b + 1] - ioi)
< std::fabs(clusterMean[b] - ioi))) {
b++; // next cluster is closer
}
clusterMean[b] = (clusterMean[b] * clusterSize[b] + ioi)
/ (clusterSize[b] + 1);
clusterSize[b]++;
break;
}
if (b == intervals) { // no suitable cluster; create new one
if (intervals == maxClusterCount) {
// System.err.println("Warning: Too many clusters");
continue; // ignore this IOI
}
intervals++;
for ( ; (b > 0) && (clusterMean[b - 1] > ioi); b--) {
clusterMean[b] = clusterMean[b - 1];
clusterSize[b] = clusterSize[b - 1];
}
clusterMean[b] = ioi;
clusterSize[b] = 1;
}
}
}
for (b = 0; b < intervals; b++) // merge similar intervals
// TODO: they are now in order, so don't need the 2nd loop
// TODO: check BOTH sides before averaging or upper gps don't work
for (i = b + 1; i < intervals; i++)
if (std::fabs(clusterMean[b] - clusterMean[i]) < clusterWidth) {
clusterMean[b] = (clusterMean[b] * clusterSize[b] +
clusterMean[i] * clusterSize[i]) /
(clusterSize[b] + clusterSize[i]);
clusterSize[b] = clusterSize[b] + clusterSize[i];
--intervals;
for (j = i + 1; j <= intervals; j++) {
clusterMean[j - 1] = clusterMean[j];
clusterSize[j - 1] = clusterSize[j];
}
}
if (intervals == 0)
return AgentList();
for (b = 0; b < intervals; b++)
clusterScore[b] = 10 * clusterSize[b];
bestn[0] = 0;
bestCount = 1;
for (b = 0; b < intervals; b++) {
for (i = 0; i <= bestCount; i++) {
if (i < topN && (i == bestCount || clusterScore[b] > clusterScore[bestn[i]])) {
if (bestCount < topN)
bestCount++;
for (j = bestCount - 1; j > i; j--)
bestn[j] = bestn[j - 1];
bestn[i] = b;
break;
}
}
}
for (b = 0; b < intervals; b++) { // score intervals
for (i = b + 1; i < intervals; i++) {
ratio = clusterMean[b] / clusterMean[i];
submult = ratio < 1;
if (submult)
degree = (int) nearbyint(1 / ratio);
else
degree = (int) nearbyint(ratio);
if ((degree >= 2) && (degree <= 8)) {
if (submult)
err = std::fabs(clusterMean[b] * degree - clusterMean[i]);
else
err = std::fabs(clusterMean[b] - clusterMean[i] * degree);
if (err < (submult ? clusterWidth : clusterWidth * degree)) {
if (degree >= 5)
degree = 1;
else
degree = 6 - degree;
clusterScore[b] += degree * clusterSize[i];
clusterScore[i] += degree * clusterSize[b];
}
}
}
}
AgentList a;
for (int index = 0; index < bestCount; index++) {
b = bestn[index];
// Adjust it, using the size of super- and sub-intervals
double newSum = clusterMean[b] * clusterScore[b];
int newCount = clusterSize[b];
int newWeight = clusterScore[b];
for (i = 0; i < intervals; i++) {
if (i == b)
continue;
ratio = clusterMean[b] / clusterMean[i];
if (ratio < 1) {
degree = (int) nearbyint(1 / ratio);
if ((degree >= 2) && (degree <= 8)) {
err = std::fabs(clusterMean[b] * degree - clusterMean[i]);
if (err < clusterWidth) {
newSum += clusterMean[i] / degree * clusterScore[i];
newCount += clusterSize[i];
newWeight += clusterScore[i];
}
}
}
else {
degree = (int) nearbyint(ratio);
if ((degree >= 2) && (degree <= 8)) {
err = std::fabs(clusterMean[b] - degree * clusterMean[i]);
if (err < clusterWidth * degree) {
newSum += clusterMean[i] * degree * clusterScore[i];
newCount += clusterSize[i];
newWeight += clusterScore[i];
}
}
}
}
double beat = newSum / newWeight;
// Scale within range ... hope the grouping isn't ternary :(
while (beat < minIBI) // Maximum speed
beat *= 2.0;
while (beat > maxIBI) // Minimum speed
beat /= 2.0;
if (beat >= minIBI) {
a.push_back(new Agent(params, beat));
}
}
return a;
}
int Induction::top(int low)
{
return low + 25; // low/10;
}
|