1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
#include "importmidi_key.h"
#include "importmidi_fraction.h"
#include "importmidi_chord.h"
#include "importmidi_inner.h"
#include "libmscore/key.h"
#include "libmscore/keysig.h"
#include "libmscore/keylist.h"
#include "libmscore/measure.h"
#include "libmscore/staff.h"
#include "libmscore/score.h"
#include "importmidi_operations.h"
// This simple key detection algorithm is from thesis
// "Inferring Score Level Musical Information From Low-Level Musical Data", 2004
// by Jürgen Kilian
namespace Ms {
namespace MidiKey {
class KeyData {
public:
KeyData(Key key, int count) : key_(key), count_(count) {}
Key key() const { return key_; }
bool operator<(const KeyData &second) const
{
// choose key with max sum count of transitions
if (count_ > second.count_)
return true;
else if (count_ < second.count_)
return false;
// if equal - prefer key with less accitential count
return qAbs((int)key_) < qAbs((int)second.key_);
}
private:
Key key_;
int count_;
};
void assignKeyListToStaff(const KeyList &kl, Staff *staff)
{
Score* score = staff->score();
const int track = staff->idx() * VOICES;
Key pkey = Key::C;
for (auto it = kl.begin(); it != kl.end(); ++it) {
const int tick = it->first;
Key key = it->second.key();
if ((key == Key::C) && (key == pkey)) // don’t insert unnecessary C key
continue;
pkey = key;
KeySig* ks = new KeySig(score);
ks->setTrack(track);
ks->setGenerated(false);
ks->setKey(key);
ks->setMag(staff->mag(Fraction::fromTicks(tick)));
Measure* m = score->tick2measure(Fraction::fromTicks(tick));
if (!m)
continue;
Segment* seg = m->getSegment(SegmentType::KeySig, Fraction::fromTicks(tick));
seg->add(ks);
}
}
Key findKey(const QList<MTrack> &tracks)
{
const int octave = 12;
std::vector<int> counts(octave);
for (const auto &track: tracks) {
if (track.mtrack->drumTrack())
continue;
for (auto it = track.chords.begin(); it != track.chords.end(); ++it) {
const auto next = std::next(it);
if (next == track.chords.end())
continue;
for (const auto ¬e1: it->second.notes) {
for (const auto ¬e2: next->second.notes) {
if (qAbs(note1.pitch - note2.pitch) == 1)
++counts[qMin(note1.pitch, note2.pitch) % octave];
}
}
}
}
std::vector<KeyData> keys = {
{Key::C_B, counts[3] + counts[10]}
, {Key::G_B, counts[10] + counts[5]}
, {Key::D_B, counts[5] + counts[0]}
, {Key::A_B, counts[0] + counts[7]}
, {Key::E_B, counts[7] + counts[2]}
, {Key::B_B, counts[2] + counts[9]}
, {Key::F, counts[9] + counts[4]}
, {Key::C, counts[4] + counts[11]}
, {Key::G, counts[11] + counts[6]}
, {Key::D, counts[6] + counts[1]}
, {Key::A, counts[1] + counts[8]}
, {Key::E, counts[8] + counts[3]}
, {Key::B, counts[3] + counts[10]}
, {Key::F_S, counts[10] + counts[5]}
, {Key::C_S, counts[5] + counts[0]}
};
std::sort(keys.begin(), keys.end());
return keys[0].key();
}
void recognizeMainKeySig(QList<MTrack> &tracks)
{
bool needToFindKey = false;
const auto &opers = midiImportOperations;
const bool isHuman = opers.data()->trackOpers.isHumanPerformance.value();
if (isHuman)
needToFindKey = true;
if (!needToFindKey) {
for (const MTrack &track: tracks) {
if (track.mtrack->drumTrack())
continue;
if (!track.hasKey) {
needToFindKey = true;
break;
}
}
}
if (!needToFindKey)
return;
const Key key = findKey(tracks);
for (MTrack &track: tracks) {
if (track.mtrack->drumTrack())
continue;
if (!track.hasKey || isHuman) {
KeySigEvent ke;
ke.setKey(key);
KeyList &staffKeyList = *track.staff->keyList();
staffKeyList[0] = ke;
assignKeyListToStaff(staffKeyList, track.staff);
}
}
}
} // namespace MidiKey
} // namespace Ms
|