1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
#ifndef __INTERVAL_TREE_H
#define __INTERVAL_TREE_H
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
template <class T, typename K = int>
class Interval {
public:
K start;
K stop;
T value;
Interval(K s, K e, const T& v)
: start(s)
, stop(e)
, value(v)
{ }
};
template <class T, typename K>
int intervalStart(const Interval<T,K>& i) {
return i.start;
}
template <class T, typename K>
int intervalStop(const Interval<T,K>& i) {
return i.stop;
}
template <class T, typename K>
ostream& operator<<(ostream& out, Interval<T,K>& i) {
out << "Interval(" << i.start << ", " << i.stop << "): " << i.value;
return out;
}
template <class T, typename K = int>
class IntervalStartSorter {
public:
bool operator() (const Interval<T,K>& a, const Interval<T,K>& b) {
return a.start < b.start;
}
};
template <class T, typename K = int>
class IntervalTree {
public:
typedef Interval<T,K> interval;
typedef vector<interval> intervalVector;
typedef IntervalTree<T,K> intervalTree;
intervalVector intervals;
intervalTree* left;
intervalTree* right;
int center;
IntervalTree(void)
: left(NULL)
, right(NULL)
, center(0)
{ }
IntervalTree(const intervalTree& other) {
center = other.center;
intervals = other.intervals;
if (other.left) {
left = (intervalTree*) malloc(sizeof(intervalTree));
*left = *other.left;
} else {
left = NULL;
}
if (other.right) {
right = new intervalTree();
*right = *other.right;
} else {
right = NULL;
}
}
IntervalTree<T,K>& operator=(const intervalTree& other) {
center = other.center;
intervals = other.intervals;
if (other.left) {
left = new intervalTree();
*left = *other.left;
} else {
left = NULL;
}
if (other.right) {
right = new intervalTree();
*right = *other.right;
} else {
right = NULL;
}
return *this;
}
IntervalTree(
intervalVector& ivals,
unsigned int depth = 16,
unsigned int minbucket = 64,
int leftextent = 0,
int rightextent = 0,
unsigned int maxbucket = 512
)
: left(NULL)
, right(NULL)
{
--depth;
IntervalStartSorter<T,K> intervalStartSorter;
if (depth == 0 || (ivals.size() < minbucket && ivals.size() < maxbucket)) {
sort(ivals.begin(), ivals.end(), intervalStartSorter);
intervals = ivals;
} else {
if (leftextent == 0 && rightextent == 0) {
// sort intervals by start
sort(ivals.begin(), ivals.end(), intervalStartSorter);
}
int leftp = 0;
int rightp = 0;
int centerp = 0;
if (leftextent || rightextent) {
leftp = leftextent;
rightp = rightextent;
} else {
leftp = ivals.front().start;
vector<K> stops;
stops.resize(ivals.size());
transform(ivals.begin(), ivals.end(), stops.begin(), intervalStop<T,K>);
rightp = *max_element(stops.begin(), stops.end());
}
//centerp = ( leftp + rightp ) / 2;
centerp = ivals.at(ivals.size() / 2).start;
center = centerp;
intervalVector lefts;
intervalVector rights;
for (typename intervalVector::iterator i = ivals.begin(); i != ivals.end(); ++i) {
interval& interval = *i;
if (interval.stop < center) {
lefts.push_back(interval);
} else if (interval.start > center) {
rights.push_back(interval);
} else {
intervals.push_back(interval);
}
}
if (!lefts.empty()) {
left = new intervalTree(lefts, depth, minbucket, leftp, centerp);
}
if (!rights.empty()) {
right = new intervalTree(rights, depth, minbucket, centerp, rightp);
}
}
}
void findOverlapping(K start, K stop, intervalVector& overlapping) {
if (!intervals.empty() && ! (stop < intervals.front().start)) {
for (typename intervalVector::iterator i = intervals.begin(); i != intervals.end(); ++i) {
interval& interval = *i;
if (interval.stop >= start && interval.start <= stop) {
overlapping.push_back(interval);
}
}
}
if (left && start <= center) {
left->findOverlapping(start, stop, overlapping);
}
if (right && stop >= center) {
right->findOverlapping(start, stop, overlapping);
}
}
void findContained(K start, K stop, intervalVector& contained) {
if (!intervals.empty() && ! (stop < intervals.front().start)) {
for (typename intervalVector::iterator i = intervals.begin(); i != intervals.end(); ++i) {
interval& interval = *i;
if (interval.start >= start && interval.stop <= stop) {
contained.push_back(interval);
}
}
}
if (left && start <= center) {
left->findContained(start, stop, contained);
}
if (right && stop >= center) {
right->findContained(start, stop, contained);
}
}
~IntervalTree(void) {
// traverse the left and right
// delete them all the way down
if (left) {
delete left;
}
if (right) {
delete right;
}
}
};
#endif
|