1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
/*
* This file is part of MUSIC.
* Copyright (C) 2009, 2022 INCF
*
* MUSIC is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* MUSIC is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// VisualiseNeurons.cpp written by Johannes Hjorth, hjorth@nada.kth.se
#include "VisualiseNeurons.h"
#include <unistd.h>
void VisualiseNeurons::printHelp() {
std::cerr << "Usage: viewevents [OPTION...] CONFIGFILE" << std::endl
<< "`viewevents' receives spikes through a MUSIC input port" << std::endl
<< "and displays them as a 3D graphical representation." << std::endl << std::endl
<< " -t, --timestep TIMESTEP time between tick() calls (default 1 ms)" << std::endl
<< " -s, --scaletime SCALING real time to simulated time scale factor (s)" << std::endl
<< " If omitted, the visualisation runs at full speed." << std::endl
<< " -h, --help print this help message" << std::endl
<< " -T, --title TITLE window title" << std::endl << std::endl
<< "CONFIGFILE format:" << std::endl
<< "<Number of neuron types (1 int)>" << std::endl
<< "<Baseline colour neuron 1 (3 double): R G B>" << std::endl
<< "<Excited colour neuron 1 (3 double): R G B>" << std::endl
<< "[Baseline colour neuron i: R G B]" << std::endl
<< "[Excited colour neuron i: R G B]" << std::endl
<< "<Neuron 1 information (4 double, 1 int): X Y Z RADIE NEURONTYPEINDEX>" << std::endl
<< "[Neuron i information: X Y Z RADIE NEURONTYPEINDEX]" << std::endl << std::endl
<< "Report bugs to <music-bugs@incf.org>." << std::endl;
exit(1);
}
void VisualiseNeurons::getArgs(int argc, char* argv[]) {
opterr = 0; // handle errors ourselves
while (1)
{
static struct option long_options[] =
{
{"timestep", required_argument, 0, 't'},
{"scaletime", required_argument, 0, 's'},
{"help", no_argument, 0, 'h'},
{"title", required_argument, 0, 'T'},
{0, 0, 0, 0}
};
/* `getopt_long' stores the option index here. */
int option_index = 0;
// the + below tells getopt_long not to reorder argv
int c = getopt_long (argc, argv, "+t:s:T:h", long_options, &option_index);
/* detect the end of the options */
if (c == -1)
break;
switch (c)
{
case 't':
dt_ = atof (optarg); //*fixme* error checking
std::cout << "Using dt = " << dt_ << std::endl;
continue;
case 's':
synchFlag_ = 1;
scaleTime_ = atof(optarg);
std::cout << "Using scaletime: " << scaleTime_ << std::endl;
continue;
case '?':
break; // ignore unknown options
case 'T':
windowTitle_ = optarg; //new string(optarg);
continue;
case 'h':
printHelp();
// fall through...
default:
abort ();
}
}
if (argc < optind + 1 || argc > optind + 1) {
printHelp(); // exits
}
confFile_ = string(argv[optind]);
}
void VisualiseNeurons::run(int argc, char **argv) {
// Add this object to the static-wrapper
objTable_.push_back(this);
// Init music
setup_ = new MUSIC::Setup(argc, argv);
MPI_Comm comm = setup_->communicator();
MPI_Comm_rank (comm, &rank_);
if(rank_ > 0) {
std::cerr << argv[0] << " only supports one process currently!"
<< std::endl;
exit(-1);
}
// Init glut
glutInit(&argc,argv);
glutSetOption(GLUT_ACTION_ON_WINDOW_CLOSE, GLUT_ACTION_CONTINUE_EXECUTION);
// Store the stop time
setup_->config ("stoptime", &stopTime_);
// Parse inparameters
getArgs(argc,argv);
readConfigFile(confFile_);
MUSIC::EventInputPort* evport = setup_->publishEventInput("plot");
if (!evport->isConnected()) {
if (rank_ == 0)
std::cerr << "port `plot' is not connected" << std::endl;
MPI_Abort (comm, 1);
}
if(evport->width() != (int) coords_.size()) {
std::cerr << "Size mismatch: port width " << evport->width()
<< " number of neurons to plot " << coords_.size()
<< std::endl;
}
MUSIC::LinearIndex indexmap(0, evport->width());
evport->map (&indexmap, this, 0.0);
double stoptime;
setup_->config ("stoptime", &stoptime);
// GLUT
glutInitDisplayMode(GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowSize(500, 500);
glutInitWindowPosition(50, 50);
glutCreateWindow(windowTitle_.c_str());
// Initialise
glEnable(GL_DEPTH_TEST);
glClearColor (0.0,0.0,0.0,1.0);
GLfloat pos[4] = { -100, 100, 200, 0.0 };
GLfloat light[4] = { 1.0, 1.0, 1.0, 1.0};
// Lightsources
glLightfv(GL_LIGHT0, GL_POSITION, pos);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light);
glLightfv(GL_LIGHT0, GL_SPECULAR, light);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING);
// Default materials
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
glEnable(GL_NORMALIZE);
// Setup camera
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
double fov = (is3dFlag_) ? 0.7*maxDist_/2 : 0.5*maxDist_/2;
// std::cout << "MAX DIST: " << maxDist_ << std::endl;
glFrustum(-fov,fov,-fov,fov,maxDist_/2,3.1*maxDist_); // Visible range 50-800
glTranslated(0,0,-2.2*maxDist_); //-600
double camAng = (is3dFlag_) ? 30 : -30;
glRotated(camAng,1,0,0);
glMatrixMode(GL_MODELVIEW);
// Create displaylist for neuron(s)
GLUquadric* neuronQuad = gluNewQuadric();
int nVert = (coords_.size() < 500) ? 10 : 2;
neuronList_ = glGenLists(1);
glNewList(neuronList_, GL_COMPILE);
gluSphere(neuronQuad, 1, nVert*2, nVert);
//gluSphere(neuronQuad, 1, 20, 10);
glEndList();
glutDisplayFunc(displayWrapper);
glutPostRedisplay();
glFinish();
// Music done.
if(rank_ == 0) {
void *exitStatus;
glutTimerFunc(25,rotateTimerWrapper, 1);
pthread_create(&tickThreadID_, NULL, runMusic, &synchFlag_);
glutPostRedisplay();
glFinish();
glutMainLoop();
pthread_join(tickThreadID_,&exitStatus);
} else {
std::cerr << "Only run start() on rank 0" << std::endl;
}
}
void VisualiseNeurons::finalize() {
runtime_->finalize ();
delete runtime_;
// std::cout << "Rank " << rank_
// << ": Searching for VisualiseNeurons wrapper object";
for(unsigned int i = 0; i < objTable_.size(); i++) {
if(objTable_[i] == this) {
//std::cout << "found.";
}
else {
//std::cout << ".";
}
}
//std::cout << std::endl;
// Should delete all other objects also.
}
void VisualiseNeurons::display() {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
glRotated(rotAngle_,0.1*sin(rotAngle_/100),1,0);
for(unsigned int i = 0; i < coords_.size(); i++) {
// Here we translate coordinate system and draw a neuron
glPushMatrix();
//double vMin = -100e-3;
//double vMax = 100e-3;
double col = volt_[i]; //(volt_[i] - vMin)/(vMax - vMin);
// maxCol is [1 0.9 0]
// GLdouble red = 0.25 + 0.75*col;
// GLdouble green = 0.53 + 0.37*col;
// GLdouble blue = 0.10 - 0.10*col;
neuronColour tmpColB = baseLineCol_[cMap_[i]];
neuronColour tmpColE = excitedCol_[cMap_[i]];
GLdouble red = tmpColB.r + (tmpColE.r-tmpColB.r)*col;
GLdouble green = tmpColB.g + (tmpColE.g-tmpColB.g)*col;
GLdouble blue = tmpColB.b + (tmpColE.b-tmpColB.b)*col;
glColor3d(red,green,blue);
//float specReflection[] = { 0.2*col, 0.2*col, 0.2*col, 1 };
//glMaterialfv(GL_FRONT, GL_SPECULAR, specReflection);
glTranslated(coords_[i].x,coords_[i].y,coords_[i].z);
double scale = coords_[i].r*(1+spikeScale_*col);
glScaled(scale,scale,scale);
glCallList(neuronList_);
glPopMatrix();
}
char buffer[20];
sprintf(buffer,"%.3f s",time_);
//std::cout << "Buffer: " << buffer << std::endl;
//std::cout << time_ << std::endl;
glLoadIdentity();
glColor3d(0.2,0.2,0.4);
// glRasterPos2d(-maxDist_*1.7,-maxDist_*1.75);
// glRasterPos3d(-maxDist_*2,-1.7*maxDist_,0*maxDist_);
if(is3dFlag_) {
glColor3d(1,1,1);
glRasterPos3d(-maxDist_*0.9,-maxDist_*0.5,maxDist_);
}
else {
glRasterPos3d(-maxDist_*0.8,maxDist_*0.8,0.3*maxDist_);
}
for(unsigned int i = 0; i < strlen(buffer); i++) {
glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18,buffer[i]);
}
glutSwapBuffers();
}
void VisualiseNeurons::addNeuron(double x, double y, double z, double r, double cIdx) {
if(cIdx >= cMap_.size()) {
std::cerr << "VisualiseNeurons: Neuron colour index "
<< cIdx << " out of range, using 0." << std::endl;
cIdx = 0;
}
// std::cout << "Adding neuron " << x << "," << y << "," << z
// << "," << r << "," << cIdx << std::endl;
neuronCoord p;
p.x = x; p.y = y; p.z = z; p.r = r;
coords_.push_back(p);
volt_.push_back(0);
cMap_.push_back(cIdx);
}
void VisualiseNeurons::rotateTimer() {
rotAngle_ += 0.5;
if(rotAngle_ >= 36000) {
rotAngle_ -= 36000;
}
}
void VisualiseNeurons::operator () (double t, MUSIC::GlobalIndex id) {
//std::cout << "Event " << id << " detected at " << t
// << " (vis time = " << time_ << ")" << std::endl;
assert(0 <= id && id < (int) volt_.size()); // Check that it is within range
if(t < time_) // time_ is old timestep
{
std::cerr << "Received old spike " << t << " at " << time_ << std::endl;
}
TimeIdPair *tmpPair = new TimeIdPair(t,id);
// Add time to priority queue
priorityQueue_.push(*tmpPair);
}
void VisualiseNeurons::tick() {
if(!done_){
// Reinitialize realtime clock at first tick
if (runtime_->time () == 0.0)
gettimeofday(&tickStartTime_,NULL);
#if 0
// Call music to get the latest simulation data
std::cerr << "Size: " << volt_.size() << " ";
std::cerr << "Entering tick (" << time_ <<")...";
#endif
runtime_->tick();
#if 0
std::cerr << "done(" << time_ <<")." << std::endl;
#endif
oldTime_ = time_;
time_ = runtime_->time ();
// Make sure the time steps are correct
assert(dt_ - 1e-9 < time_ - oldTime_
&& time_ - oldTime_ < dt_ + 1e-9);
// Should we make the visualisation go in realTime=scaleTime_*simTime?
if(synchFlag_) {
// Yes, how long did we spend in the tick?
gettimeofday(&tickEndTime_,NULL);
// How much of the time allocated for this timestep remains?
double delayLeft = dt_*scaleTime_
- (tickEndTime_.tv_sec - tickStartTime_.tv_sec)
- (tickEndTime_.tv_usec - tickStartTime_.tv_usec) / 1000000.0;
if(delayLeft > 0) {
// We reuse the timeval for the delay
tickDelay_.tv_sec = 0;
tickDelay_.tv_usec = (int) (delayLeft*1e6);
// std::cerr << "Delay left : " << tickDelay_.tv_usec
// << " milliseconds" << std::endl;
// Delay so that enough time passes
//select(0,0,0,0,&tickDelay_);
usleep(tickDelay_.tv_usec);
} else {
// Whoops, simulation were too slow... print error.
std::cerr << "t = " << time_
<< ": Music's tick() took "
<< -delayLeft*1e6 << " microseconds too long to execute"
<< std::endl;
}
// Set end of this tick as start of next tick
gettimeofday(&tickStartTime_,NULL);
}
// Decay the volt/activity
for(unsigned int i = 0; i < volt_.size(); i++) {
volt_[i] *= 1-(time_-oldTime_)/tau_;
}
// Add any new spikes that occured since last tick()
while(!priorityQueue_.empty() && priorityQueue_.top().getTime() <= time_)
{
volt_[priorityQueue_.top().getId()] = 1;
priorityQueue_.pop();
}
// Tell GLUT to update the screen
//glutPostRedisplay();
// Have we reached the end?
if(time_ >= stopTime_ - dt_/2.0) {
done_ = 1;
}
} else {
std::cout << "Last tick." << std::endl;
}
}
void VisualiseNeurons::displayWrapper() {
for(unsigned int i = 0; i < objTable_.size(); i++) {
VisualiseNeurons *vn = objTable_[i];
vn->display();
}
}
void VisualiseNeurons::rotateTimerWrapper(int v) {
VisualiseNeurons *vn = 0;
for(unsigned int i = 0; i < objTable_.size(); i++) {
vn = objTable_[i];
if(vn->is3dFlag_) {
vn->rotateTimer();
}
}
glutPostRedisplay();
glFinish();
if(vn && !(vn->done_)) {
glutTimerFunc(100,rotateTimerWrapper, 1);
}
}
void* VisualiseNeurons::runMusic(void *arg) {
VisualiseNeurons *vn = 0;
for(unsigned int i = 0; i < objTable_.size(); i++) {
vn = objTable_[i];
// Switch to runtime mode
// If the code is extended to handle more than one process
// then this will actually be SLOWER since the runtimes
// are *not* created in parallell
// Reason for this current setup is that we want to start
// the GLUT-loop as fast as possible, to get something on screen.
vn->runtime_ = new MUSIC::Runtime (vn->setup_, vn->dt_);
}
int allDone = 0;
while(!allDone && objTable_.size() > 0) {
allDone = 1;
for(unsigned int i = 0; i < objTable_.size(); i++) {
vn = objTable_[i];
vn->tick();
if(vn && !vn->done_) {
allDone = 0;
}
}
}
std::cout << "Simulation done." << std::endl;
// Simulation done.
glutLeaveMainLoop();
// Thread ends, return null
return NULL;
}
void VisualiseNeurons::readConfigFile(string filename) {
double x, y, z, r, dist;
double minDist = 1e66, maxR = 0;
neuronColour tmp;
int i = 0;
int nCols, cIdx;
std::cout << "Reading : " << filename << std::endl;
Datafile in(filename);
if (!in) {
std::cerr << "eventsource: could not open "
<< filename << std::endl;
abort ();
}
// !!! WHY?!!
// VisualiseNeurons.cpp:246: undefined reference to `datafile::skip_header()'
//in.skip_header();
// How many different colours are there
in >> nCols;
std::cout << "VisualiseNeurons: Reading " << nCols
<< " different neuron types" << std::endl;
for(i = 0; i < nCols; i++) {
// Read in neuron base colours
in >> tmp.r >> tmp.g >> tmp.b;
baseLineCol_.push_back(tmp);
// Read in neuron excited colour
in >> tmp.r >> tmp.g >> tmp.b;
excitedCol_.push_back(tmp);
}
// Read in neuron coordinates and colour
in >> x >> y >> z >> r >> cIdx;
while(!in.eof()) {
addNeuron(x,y,z,r,cIdx);
dist = sqrt(x*x + y*y + z*z);
maxDist_ = (dist > maxDist_) ? dist : maxDist_;
// All neurons are not in one plane
if(abs(x) > 1e-9 && abs(y) > 1e-9 && abs(z) > 1e-9) {
is3dFlag_ = 1;
}
// Dist and R are used to calculate spikeScale_
if(dist > 0) {
minDist = (dist < minDist) ? dist : minDist;
}
maxR = (r > maxR) ? r : maxR;
// std::cout << "Neuron " << i << " at " << x << "," << y << "," << z
// << " radie " << r << std::endl;
i++;
// Read in neuron coordinates and colour index
in >> x >> y >> z >> r >> cIdx;
}
spikeScale_ = (minDist/(3*maxR))-1;
spikeScale_ = (spikeScale_ > 0) ? spikeScale_ : 0;
std::cout << "Read " << i << " neuron positions" << std::endl;
std::cout << "Setting spike scaling to " << spikeScale_ << std::endl;
}
/*
bool VisualiseNeurons::TimeIdPair::operator<(const TimeIdPair& right) const
{
return time_ < right.getTime();
}
*/
//bool VisualiseNeurons::TimeIdPair::operator>(const TimeIdPair& right) const
bool TimeIdPair::operator<(const TimeIdPair& right) const
{
// Note that we use > here, since we want lowest items first
return time_ > right.getTime();
}
|