1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/*____________________________________________________________________________
MusicBrainz -- The Internet music metadatabase
Portions Copyright (C) 2000 Relatable
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
$Id: sigfft.cpp,v 1.6 2001/07/06 21:32:13 robert Exp $
____________________________________________________________________________*/
//------------------------------------
// fft.cpp
// The implementation of the
// Fast Fourier Transform algorithm
// modified by Sean Ward 2000
// portions (c) Reliable Software, 1996
//------------------------------------
#include "sigfft.h"
#include <string.h>
// log (1) = 0, log(2) = 1, log(3) = 2, log(4) = 2 ...
#ifdef PI
#undef PI
#endif
#define PI (2.0 * asin(1.0))
// Points must be a power of 2
FFT::FFT (int Points, long sampleRate)
: _Points (Points), _sampleRate (sampleRate)
{
_aTape = new double [_Points];
#if 0
// 1 kHz calibration wave
for (int i = 0; i < _Points; i++)
_aTape[i] = 1600 * sin (2 * PI * 1000. * i / _sampleRate);
#else
int i = 0;
for (i = 0; i < _Points; i++)
_aTape[i] = 0;
#endif
_sqrtPoints = sqrt((double)_Points);
// calculate binary log
_logPoints = 0;
Points--;
while (Points != 0)
{
Points >>= 1;
_logPoints++;
}
_aBitRev = new int [_Points];
_Bleh = new Complex[_Points];
_W = new Complex* [_logPoints+1];
// Precompute complex exponentials
int _2_l = 2;
for (int l = 1; l <= _logPoints; l++)
{
_W[l] = new Complex [_Points];
for ( int i = 0; i < _Points; i++ )
{
double re = cos (2. * PI * i / _2_l);
double im = -sin (2. * PI * i / _2_l);
_W[l][i] = Complex (re, im);
}
_2_l *= 2;
}
// set up bit reverse mapping
int rev = 0;
int halfPoints = _Points/2;
for (i = 0; i < _Points - 1; i++)
{
_aBitRev[i] = rev;
int mask = halfPoints;
// add 1 backwards
while (rev >= mask)
{
rev -= mask; // turn off this bit
mask >>= 1;
}
rev += mask;
}
_aBitRev [_Points-1] = _Points-1;
}
FFT::~FFT()
{
delete []_aTape;
delete []_aBitRev;
for (int l = 1; l <= _logPoints; l++)
{
delete []_W[l];
}
delete []_W;
delete []_Bleh;
}
//void Fft::CopyIn (SampleIter& iter)
void FFT::CopyIn(double* pBuffer, int nNumSamples)
{
if (nNumSamples > _Points)
return;
// make space for cSample samples at the end of tape
// shifting previous samples towards the beginning
memmove (_aTape, &_aTape[nNumSamples],
(_Points - nNumSamples) * sizeof(double));
// copy samples from iterator to tail end of tape
int iTail = _Points - nNumSamples;
int i = 0;
for (i = 0; i < nNumSamples; i++)
{
_aTape [i + iTail] = pBuffer[i];
}
// Initialize the FFT buffer
for (i = 0; i < _Points; i++)
PutAt (i, _aTape[i]);
}
void FFT::CopyIn2(double* pBuf, double* pBuf2, int nNumSamples)
{
if (nNumSamples > _Points)
return;
int i = 0;
// Initialize the FFT buffer
for (i = 0; i < _Points; i++)
PutAt2 (i, pBuf[i], pBuf2[i]);
}
//
// 0 1 2 3 4 5 6 7
// level 1
// step 1 0
// increm 2 W
// j = 0 <---> <---> <---> <---> 1
// level 2
// step 2
// increm 4 0
// j = 0 <-------> <-------> W 1
// j = 1 <-------> <-------> 2 W
// level 3 2
// step 4
// increm 8 0
// j = 0 <---------------> W 1
// j = 1 <---------------> 3 W 2
// j = 2 <---------------> 3 W 3
// j = 3 <---------------> 3 W
// 3
//
void FFT::Transform ()
{
// step = 2 ^ (level-1)
// increm = 2 ^ level;
int step = 1;
for (int level = 1; level <= _logPoints; level++)
{
int increm = step * 2;
for (int j = 0; j < step; j++)
{
// U = exp ( - 2 PI j / 2 ^ level )
Complex U = _W [level][j];
for (int i = j; i < _Points; i += increm)
{
// butterfly
Complex T = U;
T *= _Bleh[i+step];
_Bleh[i+step] = _Bleh[i];
_Bleh[i+step] -= T;
_Bleh[i] += T;
}
}
step *= 2;
}
}
|