File: mutator.py

package info (click to toggle)
mutatormath 3.0.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,820 kB
  • sloc: python: 2,581; makefile: 10
file content (466 lines) | stat: -rw-r--r-- 15,566 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# -*- coding: utf-8 -*-

from mutatorMath.objects.error import MutatorError
from mutatorMath.objects.location import Location, sortLocations, biasFromLocations

import sys, warnings
from operator import itemgetter


__all__ = ['Mutator', 'buildMutator']

_EPSILON = sys.float_info.epsilon


def noBend(loc): return loc


def buildMutator(items, axes=None, bias=None):
    """
        Build a mutator with the (location, obj) pairs in items.
        Determine the bias based on the given locations.
    """
    from mutatorMath.objects.bender import Bender
    items = [(Location(loc),obj) for loc, obj in items]
    if bias is None:
        bias = Location()
    else:
        bias = Location(bias)
    m = Mutator()
    if axes is not None:
        # make a Bender object
        # but do not transform the locations from the items
        bender = Bender(axes)
        m.setBender(bender)
    else:
        bender = noBend
    # the order itself does not matter, but we should always build in the same order.
    items = sorted(items)
    if not bias:
        bias = biasFromLocations([loc for loc, obj in items], True)
    m.setBias(bias)
    n = None
    ofx = []
    onx = []
    for loc, obj in items:
        nn = (loc-bias)
        if nn.isOrigin():
            m.setNeutral(obj)
            break
    if m.getNeutral() is None:
        raise MutatorError("Did not find a neutral for this system", items)
    for loc, obj in items:
        lb = loc-bias
        if lb.isOrigin(): continue
        if lb.isOnAxis():
            onx.append((lb, obj-m.getNeutral()))
        else:
            ofx.append((lb, obj-m.getNeutral()))
    for loc, obj in onx:
        m.addDelta(loc, obj, punch=False,  axisOnly=True)
    for loc, obj in ofx:
        m.addDelta(loc, obj, punch=True,  axisOnly=True)
    return bias, m


class Mutator(dict):

    """
        Calculator for multi dimensional interpolations.

    ::

        # The mutator needs one neutral object.
        m = Mutator(myNeutralMathObject)

        # The mutator needs one or more deltas.
        m.addDelta(Location(pop=1), myMasterMathObject-myNeutralMathObject)

        # The mutator calculates instances at other locations. Remember to inflate.
        m.getInstance(Location(pop=0.5)) + myNeutralMathObject

    """

    def __init__(self, neutral=None):
        self._axes = {}
        self._tags = {}
        self._bender = noBend
        self._neutral = neutral
        self._bias = Location()

    def setBender(self, bender):
        self._bender = bender

    def setBias(self, bias):
        self._bias = bias

    def getBias(self):
        return self._bias

    def setNeutral(self, aMathObject, deltaName="origin"):
        """Set the neutral object."""
        self._neutral = aMathObject
        self.addDelta(Location(), aMathObject-aMathObject, deltaName, punch=False, axisOnly=True)

    def getNeutral(self):
        """Get the neutral object."""
        return self._neutral

    def addDelta(self, location, aMathObject, deltaName = None, punch=False,  axisOnly=True):
        """ Add a delta at this location.
            *   location:   a Location object
            *   mathObject: a math-sensitive object
            *   deltaName: optional string/token
            *   punch:
                *   True: add the difference with the instance value at that location and the delta
                *   False: just add the delta.
        """
        if punch:
            r = self.getInstance(location, axisOnly=axisOnly)
            if r is not None:
                self[location.asTuple()] = aMathObject-r, deltaName
            else:
                raise MutatorError("Could not get instance.")
        else:
            self[location.asTuple()] = aMathObject, deltaName

    #
    # info
    #

    def getAxisNames(self):
        """
            Collect a set of axis names from all deltas.
        """
        s = {}
        for l, x in self.items():
            s.update(dict.fromkeys([k for k, v in l], None))
        return set(s.keys())

    def _collectAxisPoints(self):
        """
            Return a dictionary with all on-axis locations.
        """
        for l, (value, deltaName) in self.items():
            location = Location(l)
            name = location.isOnAxis()
            if name is not None and name is not False:
                if name not in self._axes:
                    self._axes[name] = []
                if l not in self._axes[name]:
                    self._axes[name].append(l)
        return self._axes

    def _collectOffAxisPoints(self):
        """
            Return a dictionary with all off-axis locations.
        """
        offAxis = {}
        for l, (value, deltaName) in self.items():
            location = Location(l)
            name = location.isOnAxis()
            if name is None or name is False:
                offAxis[l] = 1
        return list(offAxis.keys())


    def collectLocations(self):
        """
            Return a dictionary with all objects.
        """
        pts = []
        for l, (value, deltaName) in self.items():
            pts.append(Location(l))
        return pts

    def _allLocations(self):
        """
            Return a list of all locations of all objects.
        """
        l = []
        for locationTuple in self.keys():
            l.append(Location(locationTuple))
        return l

    #
    #   get instances
    #

    def getInstance(self, aLocation, axisOnly=False, getFactors=False):

        """ Calculate the delta at aLocation.
            *   aLocation:  a Location object, expected to be in bent space
            *   axisOnly:
                *   True: calculate an instance only with the on-axis masters.
                *   False: calculate an instance with on-axis and off-axis masters.
            *   getFactors:
                *   True: return a list of the calculated factors.
        """
        self._collectAxisPoints()
        factors = self.getFactors(aLocation, axisOnly)
        total = None
        for f, item, name in factors:
            if total is None:
                total = f * item
                continue
            total += f * item
        if total is None:
            total = 0 * self._neutral
        if getFactors:
            return total, factors
        return total

    def makeLocation(self, aLocation):
        if isinstance(aLocation, Location):
            return aLocation
        return Location(aLocation)

    def makeInstance(self, aLocation, bend=False):
        """
            Calculate an instance with the right bias and add the neutral.
            aLocation: expected to be in input space
        """
        aLocation = self.makeLocation(aLocation)
        if bend:
            aLocation = self._bender(aLocation)
        if not aLocation.isAmbivalent():
            instanceObject = self.getInstance(aLocation-self._bias)
        else:
            locX, locY = aLocation.split()
            instanceObject = self.getInstance(locX-self._bias)*(1,0)+self.getInstance(locY-self._bias)*(0,1)
        return instanceObject+self._neutral

    def getFactors(self, aLocation, axisOnly=False, allFactors=False):
        """
            Return a list of all factors and math items at aLocation.
            factor, mathItem, deltaName
            all = True: include factors that are zero or near-zero
        """
        deltas = []
        aLocation.expand(self.getAxisNames())
        limits = getLimits(self._allLocations(), aLocation)
        for deltaLocationTuple, (mathItem, deltaName) in sorted(self.items()):
            deltaLocation = Location(deltaLocationTuple)
            deltaLocation.expand( self.getAxisNames())
            factor = self._accumulateFactors(aLocation, deltaLocation, limits, axisOnly)
            if not (factor-_EPSILON < 0 < factor+_EPSILON) or allFactors:
                # only add non-zero deltas.
                deltas.append((factor, mathItem, deltaName))
        deltas = sorted(deltas, key=itemgetter(0), reverse=True)
        return deltas

    #
    #   calculate
    #

    def _accumulateFactors(self, aLocation, deltaLocation, limits, axisOnly):
        """
            Calculate the factors of deltaLocation towards aLocation,
        """
        relative = []
        deltaAxis = deltaLocation.isOnAxis()
        if deltaAxis is None:
            relative.append(1)
        elif deltaAxis:
            deltasOnSameAxis = self._axes.get(deltaAxis, [])
            d = ((deltaAxis, 0),)
            if d not in deltasOnSameAxis:
                deltasOnSameAxis.append(d)
            if len(deltasOnSameAxis) == 1:
                relative.append(aLocation[deltaAxis] * deltaLocation[deltaAxis])
            else:
                factor =  self._calcOnAxisFactor(aLocation, deltaAxis, deltasOnSameAxis, deltaLocation)
                relative.append(factor)
        elif not axisOnly:
            factor = self._calcOffAxisFactor(aLocation, deltaLocation, limits)
            relative.append(factor)
        if not relative:
            return 0
        f = None
        for v in relative:
            if f is None: f = v
            else:
                f *= v
        return f

    def _calcOnAxisFactor(self, aLocation, deltaAxis, deltasOnSameAxis, deltaLocation):
        """
            Calculate the on-axis factors.
        """
        if deltaAxis == "origin":
            f = 0
            v = 0
        else:
            f = aLocation[deltaAxis]
            v = deltaLocation[deltaAxis]
        i = []
        iv = {}
        for value in deltasOnSameAxis:
            iv[Location(value)[deltaAxis]]=1
        i = sorted(iv.keys())
        r = 0
        B, M, A = [], [], []
        mA, mB, mM = None, None, None
        for value in i:
            if value < f: B.append(value)
            elif value > f: A.append(value)
            else: M.append(value)
        if len(B) > 0:
            mB = max(B)
            B.sort()
        if len(A) > 0:
            mA = min(A)
            A.sort()
        if len(M) > 0:
            mM = min(M)
            M.sort()
        if mM is not None:
            if ((f-_EPSILON <  v) and (f+_EPSILON > v)) or f==v: r = 1
            else: r = 0
        elif mB is not None and mA is not None:
            if v < mB or v > mA: r = 0
            else:
                if v == mA:
                    r = float(f-mB)/(mA-mB)
                else:
                    r = float(f-mA)/(mB-mA)
        elif mB is None and mA is not None:
            if v==A[1]:
                r = float(f-A[0])/(A[1]-A[0])
            elif v == A[0]:
                r = float(f-A[1])/(A[0]-A[1])
            else:
                r = 0
        elif  mB is not None and mA is None:
            if v == B[-2]:
                r = float(f-B[-1])/(B[-2]-B[-1])
            elif v == mB:
                r = float(f-B[-2])/(B[-1]-B[-2])
            else:
                r = 0
        return r

    def _calcOffAxisFactor(self, aLocation, deltaLocation, limits):
        """
            Calculate the off-axis factors.
        """
        relative = []
        for dim in limits.keys():
            f = aLocation[dim]
            v = deltaLocation[dim]
            mB, M, mA = limits[dim]
            r = 0
            if mA is not None and v > mA:
                relative.append(0)
                continue
            elif mB is not None and v < mB:
                relative.append(0)
                continue
            if f < v-_EPSILON:
                if mB is None:
                    if M is not None and mA is not None:
                        if v == M:
                            r = (float(max(f,mA)-min(f, mA))/float(max(M,mA)-min(M, mA)))
                        else:
                            r = -(float(max(f,mA)-min(f, mA))/float(max(M,mA)-min(M, mA)) -1)
                    else: r = 0
                elif mA is None: r = 0
                else: r = float(f-mB)/(mA-mB)
            elif f > v+_EPSILON:
                if mB is None: r = 0
                elif mA is None:
                    if M is not None and mB is not None:
                        if v == M:
                            r = (float(max(f,mB)-min(f, mB))/(max(mB, M)-min(mB, M)))
                        else:
                            r = -(float(max(f,mB)-min(f, mB))/(max(mB, M)-min(mB, M)) - 1)
                    else: r = 0
                else: r = float(mA-f)/(mA-mB)
            else: r = 1
            relative.append(r)
        f = 1
        for i in relative:
            f *= i
        return f


def getLimits(locations, current, sortResults=True, verbose=False):
    """
        Find the projections for each delta in the list of locations, relative to the current location.
        Return only the dimensions that are relevant for current.
    """
    limit = {}
    for l in locations:
        a, b = current.common(l)
        if a is None:
            continue
        for name, value in b.items():
            f = a[name]
            if name not in limit:
                limit[name] = {}
                limit[name]['<'] = {}
                limit[name]['='] = {}
                limit[name]['>'] = {}
                if f > 0:
                    limit[name]['>'] = {0: [Location()]}
                elif f<0:
                    limit[name]['<'] = {0: [Location()]}
                else:
                    limit[name]['='] = {0: [Location()]}
            if current[name] < value - _EPSILON:
                if value not in limit[name]["<"]:
                    limit[name]["<"][value] = []
                limit[name]["<"][value].append(l)
            elif current[name] > value + _EPSILON:
                if value not in limit[name][">"]:
                    limit[name][">"][value] = []
                limit[name][">"][value].append(l)
            else:
                if value not in limit[name]["="]:
                    limit[name]["="][value] = []
                limit[name]["="][value].append(l)
    if not sortResults:
        return limit
    # now we have all the data, let's sort to the relevant values
    l = {}
    for name, lims in  limit.items():
        less = []
        more = []
        if lims[">"].keys():
            less = sorted(lims[">"].keys())
            lim_min = less[-1]
        else:
            lim_min = None
        if lims["<"].keys():
            more = sorted(lims["<"].keys())
            lim_max = more[0]
        else:
            lim_max = None
        if lim_min is None and lim_max is not None:
            # extrapolation < min
            if len(limit[name]['='])>0:
                l[name] = (None, list(limit[name]['='].keys())[0], None)
            elif len(more) > 1 and len(limit[name]['='])==0:
                # extrapolation
                l[name] = (None,  more[0], more[1])
        elif lim_min is not None and lim_max is None:
            # extrapolation < max
            if len(limit[name]['='])>0:
                # less > 0, M > 0, more = None
                # -> end of a limit
                l[name] = (None, limit[name]['='], None)
            elif len(less) > 1 and len(limit[name]['='])==0:
                # less > 0, M = None, more = None
                # extrapolation
                l[name] = (less[-2], less[-1], None)
        else:
            if len(limit[name]['=']) > 0:
                l[name] = (None, list(limit[name]['='].keys())[0], None)
            else:
                l[name] = (lim_min,  None, lim_max)
    return l


if __name__ == "__main__":
    import doctest
    sys.exit(doctest.testmod().failed)