1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
/*
* Copyright (C) 1996-2000 Michael R. Elkins <me@mutt.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include "mutt.h"
#include <string.h>
/* returns the seconds east of UTC given `g' and its corresponding gmtime()
representation */
static time_t compute_tz (time_t g, struct tm *utc)
{
struct tm *lt = localtime (&g);
time_t t;
int yday;
t = (((lt->tm_hour - utc->tm_hour) * 60) + (lt->tm_min - utc->tm_min)) * 60;
if ((yday = (lt->tm_yday - utc->tm_yday)))
{
/* This code is optimized to negative timezones (West of Greenwich) */
if (yday == -1 || /* UTC passed midnight before localtime */
yday > 1) /* UTC passed new year before localtime */
t -= 24 * 60 * 60;
else
t += 24 * 60 * 60;
}
return t;
}
/* Returns the local timezone in seconds east of UTC for the time t,
* or for the current time if t is zero.
*/
time_t mutt_local_tz (time_t t)
{
struct tm *ptm;
struct tm utc;
if (!t)
t = time (NULL);
ptm = gmtime (&t);
/* need to make a copy because gmtime/localtime return a pointer to
static memory (grr!) */
memcpy (&utc, ptm, sizeof (utc));
return (compute_tz (t, &utc));
}
/* theoretically time_t can be float but it is integer on most (if not all) systems */
#define TIME_T_MAX ((((time_t) 1 << (sizeof(time_t) * 8 - 2)) - 1) * 2 + 1)
#define TM_YEAR_MAX (1970 + (((((TIME_T_MAX - 59) / 60) - 59) / 60) - 23) / 24 / 366)
/* converts struct tm to time_t, but does not take the local timezone into
account unless ``local'' is nonzero */
time_t mutt_mktime (struct tm *t, int local)
{
time_t g;
static const int AccumDaysPerMonth[12] = {
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
};
/* Prevent an integer overflow.
* The time_t cast is an attempt to silence a clang range warning. */
if ((time_t)t->tm_year > TM_YEAR_MAX)
return TIME_T_MAX;
/* Compute the number of days since January 1 in the same year */
g = AccumDaysPerMonth [t->tm_mon % 12];
/* The leap years are 1972 and every 4. year until 2096,
* but this algorithm will fail after year 2099 */
g += t->tm_mday;
if ((t->tm_year % 4) || t->tm_mon < 2)
g--;
t->tm_yday = g;
/* Compute the number of days since January 1, 1970 */
g += (t->tm_year - 70) * (time_t)365;
g += (t->tm_year - 69) / 4;
/* Compute the number of hours */
g *= 24;
g += t->tm_hour;
/* Compute the number of minutes */
g *= 60;
g += t->tm_min;
/* Compute the number of seconds */
g *= 60;
g += t->tm_sec;
if (local)
g -= compute_tz (g, t);
return (g);
}
/* Return 1 if month is February of leap year, else 0 */
static int isLeapYearFeb (struct tm *tm)
{
if (tm->tm_mon == 1)
{
int y = tm->tm_year + 1900;
return (((y & 3) == 0) && (((y % 100) != 0) || ((y % 400) == 0)));
}
return (0);
}
void mutt_normalize_time (struct tm *tm)
{
static const char DaysPerMonth[12] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
int nLeap;
while (tm->tm_sec < 0)
{
tm->tm_sec += 60;
tm->tm_min--;
}
while (tm->tm_sec >= 60)
{
tm->tm_sec -= 60;
tm->tm_min++;
}
while (tm->tm_min < 0)
{
tm->tm_min += 60;
tm->tm_hour--;
}
while (tm->tm_min >= 60)
{
tm->tm_min -= 60;
tm->tm_hour++;
}
while (tm->tm_hour < 0)
{
tm->tm_hour += 24;
tm->tm_mday--;
}
while (tm->tm_hour >= 24)
{
tm->tm_hour -= 24;
tm->tm_mday++;
}
/* use loops on NNNdwmy user input values? */
while (tm->tm_mon < 0)
{
tm->tm_mon += 12;
tm->tm_year--;
}
while (tm->tm_mon >= 12)
{
tm->tm_mon -= 12;
tm->tm_year++;
}
while (tm->tm_mday <= 0)
{
if (tm->tm_mon)
tm->tm_mon--;
else
{
tm->tm_mon = 11;
tm->tm_year--;
}
tm->tm_mday += DaysPerMonth[tm->tm_mon] + isLeapYearFeb (tm);
}
while (tm->tm_mday > (DaysPerMonth[tm->tm_mon] +
(nLeap = isLeapYearFeb (tm))))
{
tm->tm_mday -= DaysPerMonth[tm->tm_mon] + nLeap;
if (tm->tm_mon < 11)
tm->tm_mon++;
else
{
tm->tm_mon = 0;
tm->tm_year++;
}
}
}
|