File: algorithms.Rd

package info (click to toggle)
mvtnorm 0.9-2-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 388 kB
  • ctags: 58
  • sloc: fortran: 1,126; ansic: 576; sh: 32; makefile: 1
file content (52 lines) | stat: -rw-r--r-- 1,738 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
\name{algorithms}
\alias{GenzBretz}
\alias{Miwa}
\title{ Choice of Algorithm and Hyper Parameters }
\description{
  Choose between two algorithms for evaluating normal distributions
  and define hyper parameters.
}
\usage{
GenzBretz(maxpts = 25000, abseps = 0.001, releps = 0)
Miwa(steps = 128)
}
\arguments{
  \item{maxpts}{ maximum number of function values as integer. }
  \item{abseps}{ absolute error tolerance as double. }
  \item{releps}{ relative error tolerance as double. }
  \item{steps}{ number of grid points to be evaluated. }
}
\details{

There are two algorithms available for evaluating normal
probabilities: The default is the randomized Quasi-Monte-Carlo procedure
by Genz (1992, 1993) and Genz and Bretz (2002) applicable to
arbitrary covariance structures and dimensions up to 1000.

For smaller dimensions (up to 20) and non-singular covariance matrices,
the algorithm by Miwa et al. (2003) can be used as well.

}
\value{
    An object of class \code{GenzBretz} or \code{Miwa} 
    defining hyper parameters.
}
\references{ 

Genz, A. (1992). Numerical computation of multivariate normal probabilities.
\emph{Journal of Computational and Graphical Statistics}, \bold{1}, 141--150.

Genz, A. (1993). Comparison of methods for the computation of multivariate
normal probabilities. \emph{Computing Science and Statistics}, \bold{25},
400--405.

Genz, A. and Bretz, F. (2002), Methods for the computation of multivariate
t-probabilities. \emph{Journal of Computational and Graphical Statistics},
\bold{11}, 950--971.

Miwa, A., Hayter J. and Kuriki, S. (2003).
The evaluation of general non-centred orthant probabilities.
\emph{Journal of the Royal Statistical Society}, Ser. B, 65, 223--234.

}
\keyword{distribution}