File: bugfix-tests.R

package info (click to toggle)
mvtnorm 0.9-2-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 388 kB
  • ctags: 58
  • sloc: fortran: 1,126; ansic: 576; sh: 32; makefile: 1
file content (208 lines) | stat: -rw-r--r-- 6,161 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
invisible(options(echo = TRUE))
library("mvtnorm")
set.seed(290875)

# correlation matrices for unequal variances were wrong
# from Pamela Ohman-Strickland <ohmanpa@UMDNJ.EDU>

a <- 4.048
shi <- -9
slo <- -10
mu <- -5
sig <- matrix(c(1,1,1,2),ncol=2) 
pmvnorm(lower=c(-a,slo),upper=c(a,shi),mean=c(mu,2*mu),sigma=sig)

# check if set.seed works (starting from 0.5-7)
n <- 5
lower <- -1
upper <- 3
df <- 4
corr <- diag(5)
corr[lower.tri(corr)] <- 0.5
delta <- rep(0, 5)
set.seed(290875)
prob1 <- pmvt(lower=lower, upper=upper, delta=delta, df=df, corr=corr)
set.seed(290875)
prob2 <- pmvt(lower=lower, upper=upper, delta=delta, df=df, corr=corr)
stopifnot(all.equal(prob1, prob2))

# confusion for univariate probabilities when sigma is a matrix
# by Jerome Asselin <jerome@hivnet.ubc.ca>
a <- pmvnorm(lower=-Inf,upper=2,mean=0,sigma=matrix(1.5))
attributes(a) <- NULL
stopifnot(all.equal(a, pnorm(2, sd=sqrt(1.5))))
a <- pmvnorm(lower=-Inf,upper=2,mean=0,sigma=matrix(.5))
attributes(a) <- NULL
stopifnot(all.equal(a, pnorm(2, sd=sqrt(.5))))
a <- pmvnorm(lower=-Inf,upper=2,mean=0,sigma=.5)
attributes(a) <- NULL
stopifnot(all.equal(a, pnorm(2, sd=sqrt(.5))))

# log argument added by Jerome Asselin <jerome@hivnet.ubc.ca>
dmvnorm(x=c(0,0), mean=c(1,1),log=TRUE)
dmvnorm(x=c(0,0), mean=c(25,25),log=TRUE)
dmvnorm(x=c(0,0), mean=c(30,30),log=TRUE)
stopifnot(all.equal(dmvnorm(x=0, mean=30,log=TRUE), 
                    dnorm(0,30,log=TRUE)))

# large df
pnorm(2)^2
pmvt(lower=c(-Inf,-Inf), upper=c(2,2), delta=c(0, 0), df=25, corr=diag(2))
pmvt(lower=c(-Inf,-Inf), upper=c(2,2), delta=c(0, 0), df=250, corr=diag(2))
pmvt(lower=c(-Inf,-Inf), upper=c(2,2), delta=c(0, 0), df=1340, corr=diag(2))
pmvt(lower=c(-Inf,-Inf), upper=c(2,2), delta=c(0, 0), df=2500, corr=diag(2))
pmvt(lower=c(-100,-100), upper=c(2,2), delta=c(0, 0), df=2500, corr=diag(2))

# df = 0
pmvt(lower=c(-Inf,-Inf), upper=c(2,2), delta=c(0, 0), df=0, corr=diag(2))
pmvt(lower=-Inf, upper = 2, delta=0, df=0, corr=1)
pnorm(2)

# larger dimensions
pnorm(2)^2
pmvnorm(lower=rep(-Inf, 2), upper=rep(2,2), sigma = diag(2))
pnorm(2)^90
pmvnorm(lower=rep(-Inf, 90), upper=rep(2,90), sigma = diag(90))
pnorm(2)^199
pmvnorm(lower=rep(-Inf, 199), upper=rep(2,199), sigma = diag(199))

# larger dimensions, again. Spotted by Chihiro Kuroki <kuroki@oak.dti.ne.jp>
# Alan's fix to MVCHNC solves this problem
cr = matrix(0.5, nr = 4, nc = 4)
diag(cr) = 1
cr
a <- pmvt(low = -rep(1, 4), upp = rep(1, 4), df = 999, corr = cr)
b <- pmvt(low = -rep(1, 4), upp = rep(1, 4), df = 4999, corr = cr)
b
attributes(a) <- NULL
attributes(b) <- NULL
stopifnot(all.equal(round(a, 3), round(b, 3)))

# cases where the support is the empty set tried to compute something.
# spotted by Peter Thomson <peter@statsresearch.co.nz>
stopifnot(pmvnorm(upper=c(-Inf,1)) == 0)
stopifnot(pmvnorm(lower=c(Inf,1)) == 0)
stopifnot(pmvnorm(lower=c(-2,0),upper=c(-1,1),corr=matrix(rep(1,4),2,2)) == 0)

# bugged Fritz (long time ago)
stopifnot(all.equal(pmvnorm(-Inf, c(Inf, 0), 0, diag(2)), pmvnorm(-Inf,
                    c(Inf, 0), 0)))

# this is a bug in `mvtdst' nobody was able to fix yet :-(
stopifnot(pmvnorm(lo=c(-Inf,-Inf), up=c(Inf,Inf), mean=c(0,0)) == 1)

### check for correct random seed initialization
### problem reported by Karen Conneely <conneely@umich.edu>
dm <- 250000
iters <- 2
corr <- .7
dim <- 100
abserr <- .0000035
cutoff <- -5.199338
mn <- rep(0,dim)
mat <- diag(dim)
for (i in 1:dim) {
    for (j in 1:(i-1)) {
        mat[i,j]=mat[j,i]=corr^(i-j)
    }
}
ll <- rep(cutoff, dim)
mn <- rep(0, dim)
p <- matrix(0, iters,1)

set.seed(290875)
for (i in 1:iters) {
   pp <- pmvnorm(lower=ll, sigma=mat, maxpts=dm, abseps=abserr)
   p[i] <- 1-pp
}
stopifnot(abs(p[1] - p[2]) < 2 * abserr)
ptmp <- p
set.seed(290875)
for (i in 1:iters) {
   pp <- pmvnorm(lower=ll, sigma=mat, maxpts=dm, abseps=abserr)
   p[i] <- 1-pp
}
stopifnot(all.equal(p, ptmp))

### same for algoritm = Miwa

pmvnormM <- function(...) pmvnorm(..., algorithm = Miwa())

a <- 4.048
shi <- -9
slo <- -10
mu <- -5
sig <- matrix(c(1,1,1,2),ncol=2) 
pmvnormM(lower=c(-a,slo),upper=c(a,shi),mean=c(mu,2*mu),sigma=sig)

# check if set.seed works (starting from 0.5-7)
n <- 5
lower <- -1
upper <- 3
df <- 4
corr <- diag(5)
corr[lower.tri(corr)] <- 0.5
delta <- rep(0, 5)
set.seed(290875)
prob1 <- pmvnormM(lower=lower, upper=upper, mean = delta, corr=corr)
set.seed(290875)
prob2 <- pmvnormM(lower=lower, upper=upper, mean = delta, corr=corr)
stopifnot(all.equal(prob1, prob2))

# confusion for univariate probabilities when sigma is a matrix
# by Jerome Asselin <jerome@hivnet.ubc.ca>
a <- pmvnormM(lower=-Inf,upper=2,mean=0,sigma=matrix(1.5))
attributes(a) <- NULL
stopifnot(all.equal(a, pnorm(2, sd=sqrt(1.5))))
a <- pmvnormM(lower=-Inf,upper=2,mean=0,sigma=matrix(.5))
attributes(a) <- NULL
stopifnot(all.equal(a, pnorm(2, sd=sqrt(.5))))
a <- pmvnormM(lower=-Inf,upper=2,mean=0,sigma=.5)
attributes(a) <- NULL
stopifnot(all.equal(a, pnorm(2, sd=sqrt(.5))))


# cases where the support is the empty set tried to compute something.
# spotted by Peter Thomson <peter@statsresearch.co.nz>
stopifnot(pmvnormM(upper=c(-Inf,1)) == 0)
stopifnot(pmvnormM(lower=c(Inf,1)) == 0)

# bugged Fritz (long time ago)
stopifnot(all.equal(pmvnormM(-Inf, c(Inf, 0), 0, diag(2)), pmvnormM(-Inf,
                    c(Inf, 0), 0)))

# this is a bug in `mvtdst' nobody was able to fix yet :-(
stopifnot(pmvnormM(lo=c(-Inf,-Inf), up=c(Inf,Inf), mean=c(0,0)) == 1)

### check for correct random seed initialization
### problem reported by Karen Conneely <conneely@umich.edu>
dm <- 250000
iters <- 2
corr <- .7
dim <- 10
abserr <- .0000035
cutoff <- -5.199338
mn <- rep(0,dim)
mat <- diag(dim)
for (i in 1:dim) {
    for (j in 1:(i-1)) {
        mat[i,j]=mat[j,i]=corr^(i-j)
    }
}
ll <- rep(cutoff, dim)
mn <- rep(0, dim)
p <- matrix(0, iters,1)

set.seed(290875)
for (i in 1:iters) {
   pp <- pmvnormM(lower=ll, sigma=mat, maxpts=dm, abseps=abserr)
   p[i] <- 1-pp
}
stopifnot(abs(p[1] - p[2]) < 2 * abserr)
ptmp <- p
set.seed(290875)
for (i in 1:iters) {
   pp <- pmvnormM(lower=ll, sigma=mat, maxpts=dm, abseps=abserr)
   p[i] <- 1-pp
}
stopifnot(all.equal(p, ptmp))