1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
invisible(options(echo = TRUE))
library("mvtnorm")
set.seed(290875)
# correlation matrices for unequal variances were wrong
# from Pamela Ohman-Strickland <ohmanpa@UMDNJ.EDU>
a <- 4.048
shi <- -9
slo <- -10
mu <- -5
sig <- matrix(c(1,1,1,2),ncol=2)
pmvnorm(lower=c(-a,slo),upper=c(a,shi),mean=c(mu,2*mu),sigma=sig)
# check if set.seed works (starting from 0.5-7)
n <- 5
lower <- -1
upper <- 3
df <- 4
corr <- diag(5)
corr[lower.tri(corr)] <- 0.5
delta <- rep(0, 5)
set.seed(290875)
prob1 <- pmvt(lower=lower, upper=upper, delta=delta, df=df, corr=corr)
set.seed(290875)
prob2 <- pmvt(lower=lower, upper=upper, delta=delta, df=df, corr=corr)
stopifnot(all.equal(prob1, prob2))
# confusion for univariate probabilities when sigma is a matrix
# by Jerome Asselin <jerome@hivnet.ubc.ca>
a <- pmvnorm(lower=-Inf,upper=2,mean=0,sigma=matrix(1.5))
attributes(a) <- NULL
stopifnot(all.equal(a, pnorm(2, sd=sqrt(1.5))))
a <- pmvnorm(lower=-Inf,upper=2,mean=0,sigma=matrix(.5))
attributes(a) <- NULL
stopifnot(all.equal(a, pnorm(2, sd=sqrt(.5))))
a <- pmvnorm(lower=-Inf,upper=2,mean=0,sigma=.5)
attributes(a) <- NULL
stopifnot(all.equal(a, pnorm(2, sd=sqrt(.5))))
# log argument added by Jerome Asselin <jerome@hivnet.ubc.ca>
dmvnorm(x=c(0,0), mean=c(1,1),log=TRUE)
dmvnorm(x=c(0,0), mean=c(25,25),log=TRUE)
dmvnorm(x=c(0,0), mean=c(30,30),log=TRUE)
stopifnot(all.equal(dmvnorm(x=0, mean=30,log=TRUE),
dnorm(0,30,log=TRUE)))
# large df
pnorm(2)^2
pmvt(lower=c(-Inf,-Inf), upper=c(2,2), delta=c(0, 0), df=25, corr=diag(2))
pmvt(lower=c(-Inf,-Inf), upper=c(2,2), delta=c(0, 0), df=250, corr=diag(2))
pmvt(lower=c(-Inf,-Inf), upper=c(2,2), delta=c(0, 0), df=1340, corr=diag(2))
pmvt(lower=c(-Inf,-Inf), upper=c(2,2), delta=c(0, 0), df=2500, corr=diag(2))
pmvt(lower=c(-100,-100), upper=c(2,2), delta=c(0, 0), df=2500, corr=diag(2))
# df = 0
pmvt(lower=c(-Inf,-Inf), upper=c(2,2), delta=c(0, 0), df=0, corr=diag(2))
pmvt(lower=-Inf, upper = 2, delta=0, df=0, corr=1)
pnorm(2)
# larger dimensions
pnorm(2)^2
pmvnorm(lower=rep(-Inf, 2), upper=rep(2,2), sigma = diag(2))
pnorm(2)^90
pmvnorm(lower=rep(-Inf, 90), upper=rep(2,90), sigma = diag(90))
pnorm(2)^199
pmvnorm(lower=rep(-Inf, 199), upper=rep(2,199), sigma = diag(199))
# larger dimensions, again. Spotted by Chihiro Kuroki <kuroki@oak.dti.ne.jp>
# Alan's fix to MVCHNC solves this problem
cr = matrix(0.5, nr = 4, nc = 4)
diag(cr) = 1
cr
a <- pmvt(low = -rep(1, 4), upp = rep(1, 4), df = 999, corr = cr)
b <- pmvt(low = -rep(1, 4), upp = rep(1, 4), df = 4999, corr = cr)
b
attributes(a) <- NULL
attributes(b) <- NULL
stopifnot(all.equal(round(a, 3), round(b, 3)))
# cases where the support is the empty set tried to compute something.
# spotted by Peter Thomson <peter@statsresearch.co.nz>
stopifnot(pmvnorm(upper=c(-Inf,1)) == 0)
stopifnot(pmvnorm(lower=c(Inf,1)) == 0)
stopifnot(pmvnorm(lower=c(-2,0),upper=c(-1,1),corr=matrix(rep(1,4),2,2)) == 0)
# bugged Fritz (long time ago)
stopifnot(all.equal(pmvnorm(-Inf, c(Inf, 0), 0, diag(2)), pmvnorm(-Inf,
c(Inf, 0), 0)))
# this is a bug in `mvtdst' nobody was able to fix yet :-(
stopifnot(pmvnorm(lo=c(-Inf,-Inf), up=c(Inf,Inf), mean=c(0,0)) == 1)
### check for correct random seed initialization
### problem reported by Karen Conneely <conneely@umich.edu>
dm <- 250000
iters <- 2
corr <- .7
dim <- 100
abserr <- .0000035
cutoff <- -5.199338
mn <- rep(0,dim)
mat <- diag(dim)
for (i in 1:dim) {
for (j in 1:(i-1)) {
mat[i,j]=mat[j,i]=corr^(i-j)
}
}
ll <- rep(cutoff, dim)
mn <- rep(0, dim)
p <- matrix(0, iters,1)
set.seed(290875)
for (i in 1:iters) {
pp <- pmvnorm(lower=ll, sigma=mat, maxpts=dm, abseps=abserr)
p[i] <- 1-pp
}
stopifnot(abs(p[1] - p[2]) < 2 * abserr)
ptmp <- p
set.seed(290875)
for (i in 1:iters) {
pp <- pmvnorm(lower=ll, sigma=mat, maxpts=dm, abseps=abserr)
p[i] <- 1-pp
}
stopifnot(all.equal(p, ptmp))
### same for algoritm = Miwa
pmvnormM <- function(...) pmvnorm(..., algorithm = Miwa())
a <- 4.048
shi <- -9
slo <- -10
mu <- -5
sig <- matrix(c(1,1,1,2),ncol=2)
pmvnormM(lower=c(-a,slo),upper=c(a,shi),mean=c(mu,2*mu),sigma=sig)
# check if set.seed works (starting from 0.5-7)
n <- 5
lower <- -1
upper <- 3
df <- 4
corr <- diag(5)
corr[lower.tri(corr)] <- 0.5
delta <- rep(0, 5)
set.seed(290875)
prob1 <- pmvnormM(lower=lower, upper=upper, mean = delta, corr=corr)
set.seed(290875)
prob2 <- pmvnormM(lower=lower, upper=upper, mean = delta, corr=corr)
stopifnot(all.equal(prob1, prob2))
# confusion for univariate probabilities when sigma is a matrix
# by Jerome Asselin <jerome@hivnet.ubc.ca>
a <- pmvnormM(lower=-Inf,upper=2,mean=0,sigma=matrix(1.5))
attributes(a) <- NULL
stopifnot(all.equal(a, pnorm(2, sd=sqrt(1.5))))
a <- pmvnormM(lower=-Inf,upper=2,mean=0,sigma=matrix(.5))
attributes(a) <- NULL
stopifnot(all.equal(a, pnorm(2, sd=sqrt(.5))))
a <- pmvnormM(lower=-Inf,upper=2,mean=0,sigma=.5)
attributes(a) <- NULL
stopifnot(all.equal(a, pnorm(2, sd=sqrt(.5))))
# cases where the support is the empty set tried to compute something.
# spotted by Peter Thomson <peter@statsresearch.co.nz>
stopifnot(pmvnormM(upper=c(-Inf,1)) == 0)
stopifnot(pmvnormM(lower=c(Inf,1)) == 0)
# bugged Fritz (long time ago)
stopifnot(all.equal(pmvnormM(-Inf, c(Inf, 0), 0, diag(2)), pmvnormM(-Inf,
c(Inf, 0), 0)))
# this is a bug in `mvtdst' nobody was able to fix yet :-(
stopifnot(pmvnormM(lo=c(-Inf,-Inf), up=c(Inf,Inf), mean=c(0,0)) == 1)
### check for correct random seed initialization
### problem reported by Karen Conneely <conneely@umich.edu>
dm <- 250000
iters <- 2
corr <- .7
dim <- 10
abserr <- .0000035
cutoff <- -5.199338
mn <- rep(0,dim)
mat <- diag(dim)
for (i in 1:dim) {
for (j in 1:(i-1)) {
mat[i,j]=mat[j,i]=corr^(i-j)
}
}
ll <- rep(cutoff, dim)
mn <- rep(0, dim)
p <- matrix(0, iters,1)
set.seed(290875)
for (i in 1:iters) {
pp <- pmvnormM(lower=ll, sigma=mat, maxpts=dm, abseps=abserr)
p[i] <- 1-pp
}
stopifnot(abs(p[1] - p[2]) < 2 * abserr)
ptmp <- p
set.seed(290875)
for (i in 1:iters) {
pp <- pmvnormM(lower=ll, sigma=mat, maxpts=dm, abseps=abserr)
p[i] <- 1-pp
}
stopifnot(all.equal(p, ptmp))
### was == 1; spotted by Alex Lenkoski <lenkoski@stat.washington.edu>
stopifnot(pmvnorm(c(-Inf, -Inf, 0, 0)) == 0.25)
#############################
## testing rmvt und pmvt
#############################
set.seed(290875)
n <- 100000
df <- rpois(1,1/rexp(1,1))+1
dim <- rpois(1,runif(1,0,10))+2
mn <- rnorm(dim,0,4) ##rep(0,dim)
sigma <- matrix(runif(dim^2,-1,1), nrow = dim, ncol = dim)
sigma <- crossprod(sigma)+diag(dim)
d <- runif(dim, 0.3, 20)
sigma <- diag(d)%*%sigma%*%diag(d)
corrMat <- cov2cor(sigma)
## sigma handed over
sims1 <- rmvt(n, sigma = sigma, delta = mn, df=df, type = "shifted")
sims2 <- rmvt(n, sigma = sigma, delta = mn, df=df, type = "Kshirsagar")
lower <- mn-d*2
upper <- mn+d*3
comp <- function(x, lower, upper){
all(x>lower) & all(x<upper)
}
ind1 <- apply(sims1, 1, comp, lower=lower, upper=upper)
mean(ind1) #Monte Carlo Integration
pmvt(lower, upper, sigma = sigma, delta=mn, df=df, type = "shifted")
ind2 <- apply(sims2, 1, comp, lower=lower, upper=upper)
mean(ind2)
pmvt(lower, upper, sigma = sigma, delta=mn, df=df, type = "Kshirsagar")
## corrMat handed over
sims1 <- rmvt(n, sigma = corrMat, delta = mn, df=df, type = "shifted")
sims2 <- rmvt(n, sigma = corrMat, delta = mn, df=df, type = "Kshirsagar")
lower <- mn-d*0.5
upper <- mn+d
comp <- function(x, lower, upper){
all(x>lower) & all(x<upper)
}
ind1 <- apply(sims1, 1, comp, lower=lower, upper=upper)
mean(ind1) #Monte Carlo Integration
pmvt(lower, upper, corr = corrMat, delta=mn, df=df, type = "shifted")
ind2 <- apply(sims2, 1, comp, lower=lower, upper=upper)
mean(ind2)
pmvt(lower, upper, corr = corrMat, delta=mn, df=df, type = "Kshirsagar")
### approx_interval for tail = "upper" went wild
### spotted by Ravi Varadhan <rvaradhan@jhmi.edu>
m <- 10
rho <- 0.1
k <- 2
alpha <- 0.05
cc_z <- numeric(m)
var <- matrix(c(1,rho,rho,1), nrow=2, ncol=2, byrow=T)
i <- 1
q1 <- qmvnorm((k*(k-1))/(m*(m-1))*alpha, tail="upper", sigma=var)$quantile
q2 <- qmvnorm((k*(k-1))/(m*(m-1))*alpha, tail="upper", sigma=var,
interval = c(0, 5))$quantile
stopifnot(all.equal(round(q1, 4), round(q2, 4)))
### grrr, still problems in approx_interval
qmvnorm(.95, sigma = tcrossprod(c(0.009, 0.75, 0.25)))
### qmvt(..., df = 0, ...) didn't work
### spotted by Ulrich Halekoh <Ulrich.Halekoh@agrsci.dk>
stopifnot(is.finite(qmvt(.95, df = 0, corr = matrix(1))$quantile))
|