1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/* This file is part of MyPaint.
* Copyright (C) 2008-2011 by Martin Renold <martinxyz@gmx.ch>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include "surface.hpp"
#include <mypaint-tiled-surface.h>
#include <Python.h>
#include <cstdio>
#include <vector>
// Implementation of tiled surface backend
#include "pythontiledsurface.cpp"
#define BBOXES 50
enum SymmetryType
{
SymmetryVertical,
SymmetryHorizontal,
SymmetryVertHorz,
SymmetryRotational,
SymmetrySnowflake,
NumSymmetryTypes
};
static const int TILE_SIZE = MYPAINT_TILE_SIZE;
static const int MAX_MIPMAP_LEVEL = MYPAINT_MAX_MIPMAP_LEVEL;
// Interface class, wrapping the backend the way MyPaint wants to use it
class TiledSurface : public Surface {
// the Python half of this class is in tiledsurface.py
public:
TiledSurface(PyObject * self_) {
c_surface = mypaint_python_tiled_surface_new(self_);
tile_request_in_progress = false;
}
~TiledSurface() {
mypaint_surface_unref((MyPaintSurface *)c_surface);
}
void set_symmetry_state(bool active,
float center_x, float center_y,
enum SymmetryType symmetry_type, int rot_symmetry_lines) {
float symmetry_angle = 0.0;
mypaint_tiled_surface2_set_symmetry_state((MyPaintTiledSurface2 *)c_surface, active,
center_x, center_y,
symmetry_angle,
(MyPaintSymmetryType)symmetry_type, rot_symmetry_lines);
}
void begin_atomic() {
mypaint_surface_begin_atomic((MyPaintSurface *)c_surface);
}
std::vector<std::vector<int>> end_atomic() {
MyPaintRectangle* rects = this->bbox_rectangles;
MyPaintRectangles bboxes = {BBOXES, rects};
Py_BEGIN_ALLOW_THREADS
mypaint_surface2_end_atomic((MyPaintSurface2 *)c_surface, &bboxes);
Py_END_ALLOW_THREADS
// The capacity of the bounding box array will most often exceed the number
// of rectangles that are actually used. The call to mypaint_surface_end_atomic
// sets the num_rectangles field to N to indicate that the first N rectangles
// were modified during the call.
std::vector<std::vector<int>> out_bboxes = std::vector<std::vector<int>>(bboxes.num_rectangles);
for(int i = 0; i < bboxes.num_rectangles; ++i) {
out_bboxes[i] = {rects[i].x, rects[i].y, rects[i].width, rects[i].height};
}
return out_bboxes;
}
// returns true if the surface was modified
// Note: Used only in test_mypaintlib.py
bool draw_dab (float x, float y,
float radius,
float color_r, float color_g, float color_b,
float opaque, float hardness = 0.5,
float color_a = 1.0,
float aspect_ratio = 1.0, float angle = 0.0,
float lock_alpha = 0.0,
float colorize = 0.0,
float posterize = 0.0,
float posterize_num = 0.0,
float paint = 1.0
) {
return mypaint_surface2_draw_dab((MyPaintSurface2 *)c_surface, x, y, radius, color_r, color_g, color_b,
opaque, hardness, color_a, aspect_ratio, angle,
lock_alpha, colorize, posterize, posterize_num, paint);
}
std::vector<double> get_color (double x, double y, double radius) {
std::vector<double> rgba = std::vector<double>(4, 0.0);
float r,g,b,a,paint;
paint = 1.0;
mypaint_surface2_get_color((MyPaintSurface2 *)c_surface, x, y, radius,
&r, &g, &b, &a, paint);
rgba[0] = r; rgba[1] = g; rgba[2] = b; rgba[3] = a;
return rgba;
}
float get_alpha (float x, float y, float radius) {
return mypaint_surface_get_alpha((MyPaintSurface *)c_surface, x, y, radius);
}
MyPaintSurface *get_surface_interface() {
return (MyPaintSurface*)c_surface;
}
MyPaintSurface2 *get_surface2_interface() {
return (MyPaintSurface2*)c_surface;
}
private:
MyPaintRectangle bbox_rectangles[BBOXES];
MyPaintPythonTiledSurface *c_surface;
MyPaintTileRequest tile_request;
bool tile_request_in_progress;
};
static PyObject *
get_module(char *name)
{
PyObject *pName = PyString_FromString(name);
PyObject *pModule = PyImport_Import(pName);
Py_DECREF(pName);
if (pModule != NULL) {
}
else {
PyErr_Print();
fprintf(stderr, "Failed to load \"%s\"\n", name);
return NULL;
}
return pModule;
}
static PyObject *
new_py_tiled_surface(PyObject *pModule)
{
PyObject *pFunc = PyObject_GetAttrString(pModule, "_new_backend_surface");
assert(pFunc && PyCallable_Check(pFunc));
PyObject *pArgs = PyTuple_New(0);
PyObject *pValue = PyObject_CallObject(pFunc, pArgs);
Py_DECREF(pArgs);
return pValue;
}
extern "C" {
MyPaintSurface *
mypaint_python_surface_factory(gpointer user_data)
{
PyObject *module = get_module((char*)"lib.tiledsurface");
PyObject *instance = new_py_tiled_surface(module);
assert(instance != NULL);
// Py_DECREF(module);
static const char *type_str = "TiledSurface *";
swig_type_info *info = SWIG_TypeQuery(type_str);
if (! info) {
fprintf(stderr, "SWIG_TypeQuery failed to look up '%s'", type_str);
return NULL;
}
TiledSurface *surf;
if (SWIG_ConvertPtr(instance, (void **)&surf, info, SWIG_POINTER_EXCEPTION) == -1) {
fprintf(stderr, "SWIG_ConvertPtr failed\n");
return NULL;
}
MyPaintSurface *interface = surf->get_surface_interface();
// Py_DECREF(instance);
return interface;
}
} // extern "C"
|