1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
|
/* This file is part of MyPaint.
* Copyright (C) 2008-2014 by Martin Renold <martinxyz@gmx.ch>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include "pixops.hpp"
#include "common.hpp"
#include "compositing.hpp"
#include "blending.hpp"
#include "fastapprox/fastpow.h"
#include <mypaint-tiled-surface.h>
#include <glib.h>
#include <math.h>
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#define NO_IMPORT_ARRAY
#include <numpy/arrayobject.h>
#include <stdlib.h>
#include <math.h>
void
tile_downscale_rgba16_c(const uint16_t *src, int src_strides, uint16_t *dst,
int dst_strides, int dst_x, int dst_y)
{
for (int y=0; y<MYPAINT_TILE_SIZE/2; y++) {
uint16_t * src_p = (uint16_t*)((char *)src + (2*y)*src_strides);
uint16_t * dst_p = (uint16_t*)((char *)dst + (y+dst_y)*dst_strides);
dst_p += 4*dst_x;
for(int x=0; x<MYPAINT_TILE_SIZE/2; x++) {
dst_p[0] = src_p[0]/4 + (src_p+4)[0]/4 + (src_p+4*MYPAINT_TILE_SIZE)[0]/4 + (src_p+4*MYPAINT_TILE_SIZE+4)[0]/4;
dst_p[1] = src_p[1]/4 + (src_p+4)[1]/4 + (src_p+4*MYPAINT_TILE_SIZE)[1]/4 + (src_p+4*MYPAINT_TILE_SIZE+4)[1]/4;
dst_p[2] = src_p[2]/4 + (src_p+4)[2]/4 + (src_p+4*MYPAINT_TILE_SIZE)[2]/4 + (src_p+4*MYPAINT_TILE_SIZE+4)[2]/4;
dst_p[3] = src_p[3]/4 + (src_p+4)[3]/4 + (src_p+4*MYPAINT_TILE_SIZE)[3]/4 + (src_p+4*MYPAINT_TILE_SIZE+4)[3]/4;
src_p += 8;
dst_p += 4;
}
}
}
void tile_downscale_rgba16(PyObject *src, PyObject *dst, int dst_x, int dst_y) {
PyArrayObject* src_arr = ((PyArrayObject*)src);
PyArrayObject* dst_arr = ((PyArrayObject*)dst);
#ifdef HEAVY_DEBUG
assert(PyArray_Check(src));
assert(PyArray_DIM(src_arr, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(src_arr, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(src_arr, 2) == 4);
assert(PyArray_TYPE(src_arr) == NPY_UINT16);
assert(PyArray_ISCARRAY(src_arr));
assert(PyArray_Check(dst));
assert(PyArray_DIM(dst_arr, 2) == 4);
assert(PyArray_TYPE(dst_arr) == NPY_UINT16);
assert(PyArray_ISCARRAY(dst_arr));
#endif
tile_downscale_rgba16_c((uint16_t*)PyArray_DATA(src_arr), PyArray_STRIDES(src_arr)[0],
(uint16_t*)PyArray_DATA(dst_arr), PyArray_STRIDES(dst_arr)[0],
dst_x, dst_y);
}
void tile_copy_rgba16_into_rgba16_c(const uint16_t *src, uint16_t *dst) {
memcpy(dst, src, MYPAINT_TILE_SIZE*MYPAINT_TILE_SIZE*4*sizeof(uint16_t));
}
void tile_copy_rgba16_into_rgba16(PyObject * src, PyObject * dst) {
PyArrayObject* src_arr = ((PyArrayObject*)src);
PyArrayObject* dst_arr = ((PyArrayObject*)dst);
#ifdef HEAVY_DEBUG
assert(PyArray_Check(dst));
assert(PyArray_DIM(dst_arr, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst_arr, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst_arr, 2) == 4);
assert(PyArray_TYPE(dst_arr) == NPY_UINT16);
assert(PyArray_ISCARRAY(dst_arr));
assert(PyArray_STRIDES(dst_arr)[1] == 4*sizeof(uint16_t));
assert(PyArray_STRIDES(dst_arr)[2] == sizeof(uint16_t));
assert(PyArray_Check(src));
assert(PyArray_DIM(src_arr, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(src_arr, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(src_arr, 2) == 4);
assert(PyArray_TYPE(src_arr) == NPY_UINT16);
assert(PyArray_ISCARRAY(src_arr));
assert(PyArray_STRIDES(src_arr)[1] == 4*sizeof(uint16_t));
assert(PyArray_STRIDES(src_arr)[2] == sizeof(uint16_t));
#endif
/* the code below can be used if it is not ISCARRAY, but only ISBEHAVED:
char * src_p = PyArray_DATA(src_arr);
char * dst_p = PyArray_DATA(dst_arr);
for (int y=0; y<MYPAINT_TILE_SIZE; y++) {
memcpy(dst_p, src_p, MYPAINT_TILE_SIZE*4);
src_p += src_arr->strides[0];
dst_p += dst_arr->strides[0];
}
*/
tile_copy_rgba16_into_rgba16_c((uint16_t *)PyArray_DATA(src_arr),
(uint16_t *)PyArray_DATA(dst_arr));
}
void tile_clear_rgba8(PyObject * dst) {
PyArrayObject* dst_arr = ((PyArrayObject*)dst);
#ifdef HEAVY_DEBUG
assert(PyArray_Check(dst));
assert(PyArray_DIM(dst_arr, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst_arr, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_TYPE(dst_arr) == NPY_UINT8);
assert(PyArray_ISBEHAVED(dst_arr));
assert(PyArray_STRIDES(dst_arr)[1] <= 8);
#endif
for (int y=0; y<MYPAINT_TILE_SIZE; y++) {
uint8_t * dst_p = (uint8_t*)((char *)PyArray_DATA(dst_arr) + y*PyArray_STRIDES(dst_arr)[0]);
memset(dst_p, 0, MYPAINT_TILE_SIZE*PyArray_STRIDES(dst_arr)[1]);
dst_p += PyArray_STRIDES(dst_arr)[0];
}
}
void tile_clear_rgba16(PyObject * dst) {
PyArrayObject* dst_arr = ((PyArrayObject*)dst);
#ifdef HEAVY_DEBUG
assert(PyArray_Check(dst));
assert(PyArray_DIM(dst_arr, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst_arr, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_TYPE(dst_arr) == NPY_UINT16);
assert(PyArray_ISBEHAVED(dst_arr));
assert(PyArray_STRIDES(dst_arr)[1] <= 8);
#endif
for (int y=0; y<MYPAINT_TILE_SIZE; y++) {
uint16_t * dst_p = (uint16_t*)((char *)PyArray_DATA(dst_arr) + y*PyArray_STRIDES(dst_arr)[0]);
memset(dst_p, 0, MYPAINT_TILE_SIZE*PyArray_STRIDES(dst_arr)[1]);
dst_p += PyArray_STRIDES(dst_arr)[0];
}
}
// Noise used for dithering (the same for each tile).
static const int dithering_noise_size = MYPAINT_TILE_SIZE*MYPAINT_TILE_SIZE*4;
static uint16_t dithering_noise[dithering_noise_size];
static void precalculate_dithering_noise_if_required()
{
static bool have_noise = false;
if (!have_noise) {
// let's make some noise
for (int i=0; i<dithering_noise_size; i++) {
// random number in range [0.03 .. 0.2] * (1<<15)
//
// We could use the full range, but like this it is much easier
// to guarantee 8bpc load-save roundtrips don't alter the
// image. With the full range we would have to pay a lot
// attention to rounding converting 8bpc to our internal format.
dithering_noise[i] = (rand() % (1<<15)) * 5/256 + (1<<15) * 2/256;
}
have_noise = true;
}
}
// Used for saving layers (transparent PNG), and for display when there
// can be transparent areas in the output.
static inline void
tile_convert_rgba16_to_rgba8_const_c (const uint16_t* const src,
const int src_strides,
const uint8_t* dst,
const int dst_strides)
{
precalculate_dithering_noise_if_required();
for (int y=0; y<MYPAINT_TILE_SIZE; y++) {
int noise_idx = y*MYPAINT_TILE_SIZE*4;
const uint16_t *src_p = (uint16_t*)((char *)src + y*src_strides);
uint8_t *dst_p = (uint8_t*)((char *)dst + y*dst_strides);
for (int x=0; x<MYPAINT_TILE_SIZE; x++) {
uint32_t r, g, b, a;
r = *src_p++;
g = *src_p++;
b = *src_p++;
a = *src_p++;
// un-premultiply alpha (with rounding)
if (a != 0) {
const uint32_t rnd_a = a/2;
r = ((r << 15) + rnd_a) / a;
g = ((g << 15) + rnd_a) / a;
b = ((b << 15) + rnd_a) / a;
} else {
r = g = b = 0;
}
const uint32_t add_r = dithering_noise[noise_idx+0];
const uint32_t add_g = add_r; // hm... do not produce too much color noise
const uint32_t add_b = add_r;
const uint32_t add_a = dithering_noise[noise_idx+1];
noise_idx += 4;
*dst_p++ = (r * 255 + add_r) / (1<<15);
*dst_p++ = (g * 255 + add_g) / (1<<15);
*dst_p++ = (b * 255 + add_b) / (1<<15);
*dst_p++ = (a * 255 + add_a) / (1<<15);
}
src_p += src_strides;
dst_p += dst_strides;
}
}
static inline void
tile_convert_rgba16_to_rgba8_c (const uint16_t* const src,
const int src_strides,
const uint8_t* dst,
const int dst_strides,
const float EOTF)
{
if (EOTF == 1.0) {
tile_convert_rgba16_to_rgba8_const_c(src, src_strides, dst, dst_strides);
return;
}
precalculate_dithering_noise_if_required();
for (int y=0; y<MYPAINT_TILE_SIZE; y++) {
int noise_idx = y*MYPAINT_TILE_SIZE*4;
const uint16_t *src_p = (uint16_t*)((char *)src + y*src_strides);
uint8_t *dst_p = (uint8_t*)((char *)dst + y*dst_strides);
for (int x=0; x<MYPAINT_TILE_SIZE; x++) {
uint32_t r, g, b, a;
r = *src_p++;
g = *src_p++;
b = *src_p++;
a = *src_p++;
#ifdef HEAVY_DEBUG
assert(a<=(1<<15));
assert(r<=(1<<15));
assert(g<=(1<<15));
assert(b<=(1<<15));
assert(r<=a);
assert(g<=a);
assert(b<=a);
#endif
// un-premultiply alpha (with rounding)
if (a != 0) {
const uint32_t rnd_a = a/2;
r = ((r << 15) + rnd_a) / a;
g = ((g << 15) + rnd_a) / a;
b = ((b << 15) + rnd_a) / a;
} else {
r = g = b = 0;
}
#ifdef HEAVY_DEBUG
assert(a<=(1<<15));
assert(r<=(1<<15));
assert(g<=(1<<15));
assert(b<=(1<<15));
#endif
/*
// Variant A) rounding
const uint32_t add_r = (1<<15)/2;
const uint32_t add_g = (1<<15)/2;
const uint32_t add_b = (1<<15)/2;
const uint32_t add_a = (1<<15)/2;
*/
/*
// Variant B) naive dithering
// This can alter the alpha channel during a load->save cycle.
const uint32_t add_r = rand() % (1<<15);
const uint32_t add_g = rand() % (1<<15);
const uint32_t add_b = rand() % (1<<15);
const uint32_t add_a = rand() % (1<<15);
*/
/*
// Variant C) slightly better dithering
// make sure we don't dither rounding errors (those did occur when converting 8bit-->16bit)
// this preserves the alpha channel, but we still add noise to the highly transparent colors
const uint32_t add_r = (rand() % (1<<15)) * 240/256 + (1<<15) * 8/256;
const uint32_t add_g = add_r; // hm... do not produce too much color noise
const uint32_t add_b = add_r;
const uint32_t add_a = (rand() % (1<<15)) * 240/256 + (1<<15) * 8/256;
// TODO: error diffusion might work better than random dithering...
*/
// Variant C) but with precalculated noise (much faster)
//
const float add_r = (float)dithering_noise[noise_idx+0] / (1<<30);
//const uint32_t add_g = add_r; // hm... do not produce too much color noise
//const uint32_t add_b = add_r;
const uint32_t add_a = dithering_noise[noise_idx+1];
noise_idx += 4;
#ifdef HEAVY_DEBUG
assert(add_a < (1<<15));
assert(add_a >= 0);
assert(noise_idx <= dithering_noise_size);
#endif
*dst_p++ = uint8_t(fastpow((float)r / (1<<15) + add_r, 1.0/EOTF) * 255 + 0.5);
*dst_p++ = uint8_t(fastpow((float)g / (1<<15) + add_r, 1.0/EOTF) * 255 + 0.5);
*dst_p++ = uint8_t(fastpow((float)b / (1<<15) + add_r, 1.0/EOTF) * 255 + 0.5);
*dst_p++ = ((a * 255 + add_a) / (1<<15));
}
src_p += src_strides;
dst_p += dst_strides;
}
}
void
tile_convert_rgba16_to_rgba8 (PyObject *src,
PyObject *dst, const float EOTF)
{
PyArrayObject* src_arr = ((PyArrayObject*)src);
PyArrayObject* dst_arr = ((PyArrayObject*)dst);
#ifdef HEAVY_DEBUG
assert(PyArray_Check(dst));
assert(PyArray_DIM(dst_arr, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst_arr, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst_arr, 2) == 4);
assert(PyArray_TYPE(dst_arr) == NPY_UINT8);
assert(PyArray_ISBEHAVED(dst_arr));
assert(PyArray_STRIDE(dst_arr, 1) == 4*sizeof(uint8_t));
assert(PyArray_STRIDE(dst_arr, 2) == sizeof(uint8_t));
assert(PyArray_Check(src));
assert(PyArray_DIM(src_arr, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(src_arr, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(src_arr, 2) == 4);
assert(PyArray_TYPE(src_arr) == NPY_UINT16);
assert(PyArray_ISBEHAVED(src_arr));
assert(PyArray_STRIDE(src_arr, 1) == 4*sizeof(uint16_t));
assert(PyArray_STRIDE(src_arr, 2) == sizeof(uint16_t));
#endif
tile_convert_rgba16_to_rgba8_c((uint16_t*)PyArray_DATA(src_arr),
PyArray_STRIDES(src_arr)[0],
(uint8_t*)PyArray_DATA(dst_arr),
PyArray_STRIDES(dst_arr)[0],
EOTF);
}
static inline void
tile_convert_rgbu16_to_rgbu8_const_c(const uint16_t *const src,
const int src_strides,
const uint8_t *dst,
const int dst_strides)
{
precalculate_dithering_noise_if_required();
for (int y=0; y<MYPAINT_TILE_SIZE; y++) {
int noise_idx = y*MYPAINT_TILE_SIZE*4;
const uint16_t *src_p = (uint16_t*)((char *)src + y*src_strides);
uint8_t *dst_p = (uint8_t*)((char *)dst + y*dst_strides);
for (int x=0; x<MYPAINT_TILE_SIZE; x++) {
uint32_t r, g, b;
r = *src_p++;
g = *src_p++;
b = *src_p++;
src_p++;
const uint32_t add = dithering_noise[noise_idx++];
*dst_p++ = (r * 255 + add) / (1<<15);
*dst_p++ = (g * 255 + add) / (1<<15);
*dst_p++ = (b * 255 + add) / (1<<15);
*dst_p++ = 255;
}
src_p += src_strides;
dst_p += dst_strides;
}
}
static inline void
tile_convert_rgbu16_to_rgbu8_c(const uint16_t* const src,
const int src_strides,
const uint8_t* dst,
const int dst_strides,
const float EOTF)
{
if (EOTF == 1.0) {
tile_convert_rgbu16_to_rgbu8_const_c(src, src_strides, dst, dst_strides);
return;
}
precalculate_dithering_noise_if_required();
for (int y=0; y<MYPAINT_TILE_SIZE; y++) {
int noise_idx = y*MYPAINT_TILE_SIZE*4;
const uint16_t *src_p = (uint16_t*)((char *)src + y*src_strides);
uint8_t *dst_p = (uint8_t*)((char *)dst + y*dst_strides);
for (int x=0; x<MYPAINT_TILE_SIZE; x++) {
float r, g, b;
r = ((float)*src_p++ / (1<<15));
g = ((float)*src_p++ / (1<<15));
b = ((float)*src_p++ / (1<<15));
src_p++; // alpha unused
#ifdef HEAVY_DEBUG
assert(r<=(1<<15));
assert(g<=(1<<15));
assert(b<=(1<<15));
#endif
/*
// rounding
const uint32_t add = (1<<15)/2;
*/
// dithering
const float add = (float)dithering_noise[noise_idx++] / (1<<30);
*dst_p++ = (fastpow(r + add, 1.0/EOTF) ) * 255 + 0.5;
*dst_p++ = (fastpow(g + add, 1.0/EOTF) ) * 255 + 0.5;
*dst_p++ = (fastpow(b + add, 1.0/EOTF) ) * 255 + 0.5;
*dst_p++ = 255;
}
#ifdef HEAVY_DEBUG
assert(noise_idx <= dithering_noise_size);
#endif
src_p += src_strides;
dst_p += dst_strides;
}
}
void tile_convert_rgbu16_to_rgbu8(PyObject * src, PyObject * dst, const float EOTF) {
PyArrayObject* src_arr = ((PyArrayObject*)src);
PyArrayObject* dst_arr = ((PyArrayObject*)dst);
#ifdef HEAVY_DEBUG
assert(PyArray_Check(dst));
assert(PyArray_DIM(dst_arr, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst_arr, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst_arr, 2) == 4);
assert(PyArray_TYPE(dst_arr) == NPY_UINT8);
assert(PyArray_ISBEHAVED(dst_arr));
assert(PyArray_STRIDE(dst_arr, 1) == 4*sizeof(uint8_t));
assert(PyArray_STRIDE(dst_arr, 2) == sizeof(uint8_t));
assert(PyArray_Check(src));
assert(PyArray_DIM(src_arr, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(src_arr, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(src_arr, 2) == 4);
assert(PyArray_TYPE(src_arr) == NPY_UINT16);
assert(PyArray_ISBEHAVED(src_arr));
assert(PyArray_STRIDE(src_arr, 1) == 4*sizeof(uint16_t));
assert(PyArray_STRIDE(src_arr, 2) == sizeof(uint16_t));
#endif
tile_convert_rgbu16_to_rgbu8_c((uint16_t*)PyArray_DATA(src_arr), PyArray_STRIDES(src_arr)[0],
(uint8_t*)PyArray_DATA(dst_arr), PyArray_STRIDES(dst_arr)[0],
EOTF);
}
void tile_convert_rgba8_to_rgba16_const(PyObject * src, PyObject * dst) {
PyArrayObject* src_arr = ((PyArrayObject*)src);
PyArrayObject* dst_arr = ((PyArrayObject*)dst);
for (int y=0; y<MYPAINT_TILE_SIZE; y++) {
uint8_t * src_p = (uint8_t*)((char *)PyArray_DATA(src_arr) + y*PyArray_STRIDES(src_arr)[0]);
uint16_t * dst_p = (uint16_t*)((char *)PyArray_DATA(dst_arr) + y*PyArray_STRIDES(dst_arr)[0]);
for (int x=0; x<MYPAINT_TILE_SIZE; x++) {
uint32_t r, g, b, a;
r = *src_p++;
g = *src_p++;
b = *src_p++;
a = *src_p++;
// convert to fixed point (with rounding)
r = (r * (1<<15) + 255/2) / 255;
g = (g * (1<<15) + 255/2) / 255;
b = (b * (1<<15) + 255/2) / 255;
a = (a * (1<<15) + 255/2) / 255;
// premultiply alpha (with rounding), save back
*dst_p++ = (r * a + (1<<15)/2) / (1<<15);
*dst_p++ = (g * a + (1<<15)/2) / (1<<15);
*dst_p++ = (b * a + (1<<15)/2) / (1<<15);
*dst_p++ = a;
}
}
}
// used mainly for loading layers (transparent PNG)
void tile_convert_rgba8_to_rgba16(PyObject * src, PyObject * dst, const float EOTF) {
if (EOTF == 1.0) {
tile_convert_rgba8_to_rgba16_const(src, dst);
return;
}
PyArrayObject* src_arr = ((PyArrayObject*)src);
PyArrayObject* dst_arr = ((PyArrayObject*)dst);
#ifdef HEAVY_DEBUG
assert(PyArray_Check(dst));
assert(PyArray_DIM(dst_arr, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst_arr, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst_arr, 2) == 4);
assert(PyArray_TYPE(dst_arr) == NPY_UINT16);
assert(PyArray_ISBEHAVED(dst_arr));
assert(PyArray_STRIDES(dst_arr)[1] == 4*sizeof(uint16_t));
assert(PyArray_STRIDES(dst_arr)[2] == sizeof(uint16_t));
assert(PyArray_Check(src));
assert(PyArray_DIM(src_arr, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(src_arr, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(src_arr, 2) == 4);
assert(PyArray_TYPE(src_arr) == NPY_UINT8);
assert(PyArray_ISBEHAVED(src_arr));
assert(PyArray_STRIDES(src_arr)[1] == 4*sizeof(uint8_t));
assert(PyArray_STRIDES(src_arr)[2] == sizeof(uint8_t));
#endif
for (int y=0; y<MYPAINT_TILE_SIZE; y++) {
uint8_t * src_p = (uint8_t*)((char *)PyArray_DATA(src_arr) + y*PyArray_STRIDES(src_arr)[0]);
uint16_t * dst_p = (uint16_t*)((char *)PyArray_DATA(dst_arr) + y*PyArray_STRIDES(dst_arr)[0]);
for (int x=0; x<MYPAINT_TILE_SIZE; x++) {
uint32_t r, g, b, a;
r = *src_p++;
g = *src_p++;
b = *src_p++;
a = *src_p++;
// convert to fixed point (with rounding)
r = uint32_t(fastpow((float)r/255.0, EOTF) * (1<<15) + 0.5);
g = uint32_t(fastpow((float)g/255.0, EOTF) * (1<<15) + 0.5);
b = uint32_t(fastpow((float)b/255.0, EOTF) * (1<<15) + 0.5);
a = (a * (1<<15) + 255/2) / 255;
// premultiply alpha (with rounding), save back
*dst_p++ = (r * a + (1<<15)/2) / (1<<15);
*dst_p++ = (g * a + (1<<15)/2) / (1<<15);
*dst_p++ = (b * a + (1<<15)/2) / (1<<15);
*dst_p++ = a;
}
}
}
void tile_rgba2flat(PyObject * dst_obj, PyObject * bg_obj) {
PyArrayObject* bg = ((PyArrayObject*)bg_obj);
PyArrayObject* dst = ((PyArrayObject*)dst_obj);
#ifdef HEAVY_DEBUG
assert(PyArray_Check(dst_obj));
assert(PyArray_DIM(dst, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst, 2) == 4);
assert(PyArray_TYPE(dst) == NPY_UINT16);
assert(PyArray_ISCARRAY(dst));
assert(PyArray_Check(bg_obj));
assert(PyArray_DIM(bg, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(bg, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(bg, 2) == 4);
assert(PyArray_TYPE(bg) == NPY_UINT16);
assert(PyArray_ISCARRAY(bg));
#endif
uint16_t * dst_p = (uint16_t*)PyArray_DATA(dst);
uint16_t * bg_p = (uint16_t*)PyArray_DATA(bg);
for (int i=0; i<MYPAINT_TILE_SIZE*MYPAINT_TILE_SIZE; i++) {
// resultAlpha = 1.0 (thus it does not matter if resultColor is premultiplied alpha or not)
// resultColor = topColor + (1.0 - topAlpha) * bottomColor
const uint32_t one_minus_top_alpha = (1<<15) - dst_p[3];
dst_p[0] += ((uint32_t)one_minus_top_alpha*bg_p[0]) / (1<<15);
dst_p[1] += ((uint32_t)one_minus_top_alpha*bg_p[1]) / (1<<15);
dst_p[2] += ((uint32_t)one_minus_top_alpha*bg_p[2]) / (1<<15);
dst_p += 4;
bg_p += 4;
}
}
void tile_flat2rgba(PyObject * dst_obj, PyObject * bg_obj) {
PyArrayObject *dst = (PyArrayObject *)dst_obj;
PyArrayObject *bg = (PyArrayObject *)bg_obj;
#ifdef HEAVY_DEBUG
assert(PyArray_Check(dst_obj));
assert(PyArray_DIM(dst, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst, 2) == 4);
assert(PyArray_TYPE(dst) == NPY_UINT16);
assert(PyArray_ISCARRAY(dst));
assert(PyArray_Check(bg_obj));
assert(PyArray_DIM(bg, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(bg, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(bg, 2) == 4);
assert(PyArray_TYPE(bg) == NPY_UINT16);
assert(PyArray_ISCARRAY(bg));
#endif
uint16_t * dst_p = (uint16_t*)PyArray_DATA(dst);
uint16_t * bg_p = (uint16_t*)PyArray_DATA(bg);
for (int i=0; i<MYPAINT_TILE_SIZE*MYPAINT_TILE_SIZE; i++) {
// 1. calculate final dst.alpha
uint16_t final_alpha = dst_p[3];
for (int i=0; i<3;i++) {
int32_t color_change = (int32_t)dst_p[i] - bg_p[i];
uint16_t minimal_alpha;
if (color_change > 0) {
minimal_alpha = (int64_t)color_change*(1<<15) / ((1<<15) - bg_p[i]);
} else if (color_change < 0) {
minimal_alpha = (int64_t)-color_change*(1<<15) / bg_p[i];
} else {
minimal_alpha = 0;
}
final_alpha = MAX(final_alpha, minimal_alpha);
#ifdef HEAVY_DEBUG
assert(minimal_alpha <= (1<<15));
assert(final_alpha <= (1<<15));
#endif
}
// 2. calculate dst.color and update dst
dst_p[3] = final_alpha;
if (final_alpha > 0) {
for (int i=0; i<3;i++) {
int32_t color_change = (int32_t)dst_p[i] - bg_p[i];
//int64_t res = bg_p[i] + (int64_t)color_change*(1<<15) / final_alpha;
// premultiplied with final_alpha
int64_t res = (uint32_t)bg_p[i]*final_alpha/(1<<15) + (int64_t)color_change;
res = CLAMP(res, 0, final_alpha); // fix rounding errors
dst_p[i] = res;
#ifdef HEAVY_DEBUG
assert(dst_p[i] <= dst_p[3]);
#endif
}
} else {
dst_p[0] = 0;
dst_p[1] = 0;
dst_p[2] = 0;
}
dst_p += 4;
bg_p += 4;
}
}
void tile_perceptual_change_strokemap(PyObject * a_obj, PyObject * b_obj, PyObject * res_obj) {
PyArrayObject *a = (PyArrayObject *)a_obj;
PyArrayObject *b = (PyArrayObject *)b_obj;
PyArrayObject *res = (PyArrayObject *)res_obj;
#ifdef HEAVY_DEBUG
assert(PyArray_TYPE(a) == NPY_UINT16);
assert(PyArray_TYPE(b) == NPY_UINT16);
assert(PyArray_TYPE(res) == NPY_UINT8);
assert(PyArray_ISCARRAY(a));
assert(PyArray_ISCARRAY(b));
assert(PyArray_ISCARRAY(res));
#endif
uint16_t * a_p = (uint16_t*)PyArray_DATA(a);
uint16_t * b_p = (uint16_t*)PyArray_DATA(b);
uint8_t * res_p = (uint8_t*)PyArray_DATA(res);
for (int y=0; y<MYPAINT_TILE_SIZE; y++) {
for (int x=0; x<MYPAINT_TILE_SIZE; x++) {
int32_t color_change = 0;
// We want to compare a.color with b.color, but we only know
// (a.color * a.alpha) and (b.color * b.alpha). We multiply
// each component with the alpha of the other image, so they are
// scaled the same and can be compared.
for (int i=0; i<3; i++) {
int32_t a_col = (uint32_t)a_p[i] * b_p[3] / (1<<15); // a.color * a.alpha*b.alpha
int32_t b_col = (uint32_t)b_p[i] * a_p[3] / (1<<15); // b.color * a.alpha*b.alpha
color_change += abs(b_col - a_col);
}
// "color_change" is in the range [0, 3*a_a]
// if either old or new alpha is (near) zero, "color_change" is (near) zero
int32_t alpha_old = a_p[3];
int32_t alpha_new = b_p[3];
// Note: the thresholds below are arbitrary choices found to work okay
// We report a color change only if both old and new color are
// well-defined (big enough alpha).
bool is_perceptual_color_change = color_change > MAX(alpha_old, alpha_new)/16;
int32_t alpha_diff = alpha_new - alpha_old; // no abs() here (ignore erasers)
// We check the alpha increase relative to the previous alpha.
bool is_perceptual_alpha_increase = alpha_diff > (1<<15)/4;
// this one is responsible for making fat big ugly easy-to-hit pointer targets
bool is_big_relative_alpha_increase = alpha_diff > (1<<15)/64 && alpha_diff > alpha_old/2;
if (is_perceptual_alpha_increase || is_big_relative_alpha_increase || is_perceptual_color_change) {
res_p[0] = 1;
} else {
res_p[0] = 0;
}
a_p += 4;
b_p += 4;
res_p += 1;
}
}
}
// A named tile combine operation: what the user sees as a "blend mode" or
// the "layer composite" modes in the application.
template <class B, class C>
class TileDataCombine : public TileDataCombineOp
{
private:
// The canonical name for the combine mode
const char *name;
// Alpha/nonalpha functors; must be members to keep GCC4.6 builds happy
static const int bufsize = MYPAINT_TILE_SIZE*MYPAINT_TILE_SIZE*4;
BufferCombineFunc<true, bufsize, B, C> combine_dstalpha;
BufferCombineFunc<false, bufsize, B, C> combine_dstnoalpha;
public:
TileDataCombine(const char *name) {
this->name = name;
}
// Apply this combine operation to source and destination tile-sized
// buffers of uint16_t (15ish-bit) RGBA data. The output is written back
// into the destination buffer.
void combine_data (const fix15_short_t *src_p,
fix15_short_t *dst_p,
const bool dst_has_alpha,
const float src_opacity) const
{
const fix15_short_t opac = fix15_short_clamp(src_opacity * fix15_one);
if (dst_has_alpha) {
combine_dstalpha(src_p, dst_p, opac);
}
else {
combine_dstnoalpha(src_p, dst_p, opac);
}
}
// True if a zero-alpha source pixel can ever affect a destination pixel
bool zero_alpha_has_effect() const {
return C::zero_alpha_has_effect;
}
// True if a source pixel can ever reduce the alpha of a destination pixel
bool can_decrease_alpha() const {
return C::can_decrease_alpha;
}
// True if a zero-alpha src pixel always clears the dst pixel
bool zero_alpha_clears_backdrop() const {
return C::zero_alpha_clears_backdrop;
}
// Returns the canonical name of the mode
const char* get_name() const {
return name;
}
};
// Integer-indexed LUT for the layer mode definitions, defining their canonical
// names.
static const TileDataCombineOp * combine_mode_info[NumCombineModes] =
{
// Source-over compositing + various blend modes
new TileDataCombine<BlendNormal, CompositeSourceOver>("svg:src-over"),
new TileDataCombine<BlendMultiply, CompositeSourceOver>("svg:multiply"),
new TileDataCombine<BlendScreen, CompositeSourceOver>("svg:screen"),
new TileDataCombine<BlendOverlay, CompositeSourceOver>("svg:overlay"),
new TileDataCombine<BlendDarken, CompositeSourceOver>("svg:darken"),
new TileDataCombine<BlendLighten, CompositeSourceOver>("svg:lighten"),
new TileDataCombine<BlendHardLight, CompositeSourceOver>("svg:hard-light"),
new TileDataCombine<BlendSoftLight, CompositeSourceOver>("svg:soft-light"),
new TileDataCombine<BlendColorBurn, CompositeSourceOver>("svg:color-burn"),
new TileDataCombine<BlendColorDodge, CompositeSourceOver>("svg:color-dodge"),
new TileDataCombine<BlendDifference, CompositeSourceOver>("svg:difference"),
new TileDataCombine<BlendExclusion, CompositeSourceOver>("svg:exclusion"),
new TileDataCombine<BlendHue, CompositeSourceOver>("svg:hue"),
new TileDataCombine<BlendSaturation, CompositeSourceOver>("svg:saturation"),
new TileDataCombine<BlendColor, CompositeSourceOver>("svg:color"),
new TileDataCombine<BlendLuminosity, CompositeSourceOver>("svg:luminosity"),
// Normal blend mode + various compositing operators
new TileDataCombine<BlendNormal, CompositeLighter>("svg:plus"),
new TileDataCombine<BlendNormal, CompositeDestinationIn>("svg:dst-in"),
new TileDataCombine<BlendNormal, CompositeDestinationOut>("svg:dst-out"),
new TileDataCombine<BlendNormal, CompositeSourceAtop>("svg:src-atop"),
new TileDataCombine<BlendNormal, CompositeDestinationAtop>("svg:dst-atop"),
new TileDataCombine<BlendNormal, CompositeSpectralWGM>("mypaint:spectral-wgm")
};
/* combine_mode_get_info(): extracts Python-readable metadata for a mode */
PyObject *
combine_mode_get_info(enum CombineMode mode)
{
if (mode >= NumCombineModes || mode < 0) {
return Py_BuildValue("{}");
}
const TileDataCombineOp *op = combine_mode_info[mode];
return Py_BuildValue("{s:i,s:i,s:i,s:s}",
"zero_alpha_has_effect", op->zero_alpha_has_effect(),
"can_decrease_alpha", op->can_decrease_alpha(),
"zero_alpha_clears_backdrop", op->zero_alpha_clears_backdrop(),
"name", op->get_name()
);
}
/* tile_combine(): primary Python interface for blending+compositing tiles */
void
tile_combine (enum CombineMode mode,
PyObject *src_obj,
PyObject *dst_obj,
const bool dst_has_alpha,
const float src_opacity)
{
PyArrayObject* src = ((PyArrayObject*)src_obj);
PyArrayObject* dst = ((PyArrayObject*)dst_obj);
#ifdef HEAVY_DEBUG
assert(PyArray_Check(src_obj));
assert(PyArray_DIM(src, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(src, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(src, 2) == 4);
assert(PyArray_TYPE(src) == NPY_UINT16);
assert(PyArray_ISCARRAY(src));
assert(PyArray_Check(dst_obj));
assert(PyArray_DIM(dst, 0) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst, 1) == MYPAINT_TILE_SIZE);
assert(PyArray_DIM(dst, 2) == 4);
assert(PyArray_TYPE(dst) == NPY_UINT16);
assert(PyArray_ISCARRAY(dst));
assert(PyArray_STRIDES(dst)[0] == 4*sizeof(fix15_short_t)*MYPAINT_TILE_SIZE);
assert(PyArray_STRIDES(dst)[1] == 4*sizeof(fix15_short_t));
assert(PyArray_STRIDES(dst)[2] == sizeof(fix15_short_t));
#endif
const fix15_short_t* const src_p = (fix15_short_t *)PyArray_DATA(src);
fix15_short_t* const dst_p = (fix15_short_t *)PyArray_DATA(dst);
if (mode >= NumCombineModes || mode < 0) {
return;
}
const TileDataCombineOp *op = combine_mode_info[mode];
op->combine_data(src_p, dst_p, dst_has_alpha, src_opacity);
}
|