1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
.. _cheat-sheet-py3:
Type hints cheat sheet (Python 3)
=================================
This document is a quick cheat sheet showing how the :pep:`484` type
annotation notation represents various common types in Python 3.
.. note::
Technically many of the type annotations shown below are redundant,
because mypy can derive them from the type of the expression. So
many of the examples have a dual purpose: show how to write the
annotation, and show the inferred types.
Variables
*********
Python 3.6 introduced a syntax for annotating variables in :pep:`526`
and we use it in most examples.
.. code-block:: python
# This is how you declare the type of a variable type in Python 3.6
age: int = 1
# In Python 3.5 and earlier you can use a type comment instead
# (equivalent to the previous definition)
age = 1 # type: int
# You don't need to initialize a variable to annotate it
a: int # Ok (no value at runtime until assigned)
# The latter is useful in conditional branches
child: bool
if age < 18:
child = True
else:
child = False
Built-in types
**************
.. code-block:: python
from typing import List, Set, Dict, Tuple, Optional
# For simple built-in types, just use the name of the type
x: int = 1
x: float = 1.0
x: bool = True
x: str = "test"
x: bytes = b"test"
# For collections, the type of the collection item is in brackets
# (Python 3.9+)
x: list[int] = [1]
x: set[int] = {6, 7}
# In Python 3.8 and earlier, the name of the collection type is
# capitalized, and the type is imported from 'typing'
x: List[int] = [1]
x: Set[int] = {6, 7}
# Same as above, but with type comment syntax (Python 3.5 and earlier)
x = [1] # type: List[int]
# For mappings, we need the types of both keys and values
x: dict[str, float] = {'field': 2.0} # Python 3.9+
x: Dict[str, float] = {'field': 2.0}
# For tuples of fixed size, we specify the types of all the elements
x: tuple[int, str, float] = (3, "yes", 7.5) # Python 3.9+
x: Tuple[int, str, float] = (3, "yes", 7.5)
# For tuples of variable size, we use one type and ellipsis
x: tuple[int, ...] = (1, 2, 3) # Python 3.9+
x: Tuple[int, ...] = (1, 2, 3)
# Use Optional[] for values that could be None
x: Optional[str] = some_function()
# Mypy understands a value can't be None in an if-statement
if x is not None:
print(x.upper())
# If a value can never be None due to some invariants, use an assert
assert x is not None
print(x.upper())
Functions
*********
Python 3 supports an annotation syntax for function declarations.
.. code-block:: python
from typing import Callable, Iterator, Union, Optional, List
# This is how you annotate a function definition
def stringify(num: int) -> str:
return str(num)
# And here's how you specify multiple arguments
def plus(num1: int, num2: int) -> int:
return num1 + num2
# Add default value for an argument after the type annotation
def f(num1: int, my_float: float = 3.5) -> float:
return num1 + my_float
# This is how you annotate a callable (function) value
x: Callable[[int, float], float] = f
# A generator function that yields ints is secretly just a function that
# returns an iterator of ints, so that's how we annotate it
def g(n: int) -> Iterator[int]:
i = 0
while i < n:
yield i
i += 1
# You can of course split a function annotation over multiple lines
def send_email(address: Union[str, List[str]],
sender: str,
cc: Optional[List[str]],
bcc: Optional[List[str]],
subject='',
body: Optional[List[str]] = None
) -> bool:
...
# An argument can be declared positional-only by giving it a name
# starting with two underscores:
def quux(__x: int) -> None:
pass
quux(3) # Fine
quux(__x=3) # Error
When you're puzzled or when things are complicated
**************************************************
.. code-block:: python
from typing import Union, Any, List, Optional, cast
# To find out what type mypy infers for an expression anywhere in
# your program, wrap it in reveal_type(). Mypy will print an error
# message with the type; remove it again before running the code.
reveal_type(1) # -> Revealed type is 'builtins.int'
# Use Union when something could be one of a few types
x: List[Union[int, str]] = [3, 5, "test", "fun"]
# Use Any if you don't know the type of something or it's too
# dynamic to write a type for
x: Any = mystery_function()
# If you initialize a variable with an empty container or "None"
# you may have to help mypy a bit by providing a type annotation
x: List[str] = []
x: Optional[str] = None
# This makes each positional arg and each keyword arg a "str"
def call(self, *args: str, **kwargs: str) -> str:
request = make_request(*args, **kwargs)
return self.do_api_query(request)
# Use a "type: ignore" comment to suppress errors on a given line,
# when your code confuses mypy or runs into an outright bug in mypy.
# Good practice is to comment every "ignore" with a bug link
# (in mypy, typeshed, or your own code) or an explanation of the issue.
x = confusing_function() # type: ignore # https://github.com/python/mypy/issues/1167
# "cast" is a helper function that lets you override the inferred
# type of an expression. It's only for mypy -- there's no runtime check.
a = [4]
b = cast(List[int], a) # Passes fine
c = cast(List[str], a) # Passes fine (no runtime check)
reveal_type(c) # -> Revealed type is 'builtins.list[builtins.str]'
print(c) # -> [4]; the object is not cast
# If you want dynamic attributes on your class, have it override "__setattr__"
# or "__getattr__" in a stub or in your source code.
#
# "__setattr__" allows for dynamic assignment to names
# "__getattr__" allows for dynamic access to names
class A:
# This will allow assignment to any A.x, if x is the same type as "value"
# (use "value: Any" to allow arbitrary types)
def __setattr__(self, name: str, value: int) -> None: ...
# This will allow access to any A.x, if x is compatible with the return type
def __getattr__(self, name: str) -> int: ...
a.foo = 42 # Works
a.bar = 'Ex-parrot' # Fails type checking
Standard "duck types"
*********************
In typical Python code, many functions that can take a list or a dict
as an argument only need their argument to be somehow "list-like" or
"dict-like". A specific meaning of "list-like" or "dict-like" (or
something-else-like) is called a "duck type", and several duck types
that are common in idiomatic Python are standardized.
.. code-block:: python
from typing import Mapping, MutableMapping, Sequence, Iterable, List, Set
# Use Iterable for generic iterables (anything usable in "for"),
# and Sequence where a sequence (supporting "len" and "__getitem__") is
# required
def f(ints: Iterable[int]) -> List[str]:
return [str(x) for x in ints]
f(range(1, 3))
# Mapping describes a dict-like object (with "__getitem__") that we won't
# mutate, and MutableMapping one (with "__setitem__") that we might
def f(my_mapping: Mapping[int, str]) -> List[int]:
my_mapping[5] = 'maybe' # if we try this, mypy will throw an error...
return list(my_mapping.keys())
f({3: 'yes', 4: 'no'})
def f(my_mapping: MutableMapping[int, str]) -> Set[str]:
my_mapping[5] = 'maybe' # ...but mypy is OK with this.
return set(my_mapping.values())
f({3: 'yes', 4: 'no'})
You can even make your own duck types using :ref:`protocol-types`.
Classes
*******
.. code-block:: python
class MyClass:
# You can optionally declare instance variables in the class body
attr: int
# This is an instance variable with a default value
charge_percent: int = 100
# The "__init__" method doesn't return anything, so it gets return
# type "None" just like any other method that doesn't return anything
def __init__(self) -> None:
...
# For instance methods, omit type for "self"
def my_method(self, num: int, str1: str) -> str:
return num * str1
# User-defined classes are valid as types in annotations
x: MyClass = MyClass()
# You can use the ClassVar annotation to declare a class variable
class Car:
seats: ClassVar[int] = 4
passengers: ClassVar[List[str]]
# You can also declare the type of an attribute in "__init__"
class Box:
def __init__(self) -> None:
self.items: List[str] = []
Coroutines and asyncio
**********************
See :ref:`async-and-await` for the full detail on typing coroutines and asynchronous code.
.. code-block:: python
import asyncio
# A coroutine is typed like a normal function
async def countdown35(tag: str, count: int) -> str:
while count > 0:
print('T-minus {} ({})'.format(count, tag))
await asyncio.sleep(0.1)
count -= 1
return "Blastoff!"
Miscellaneous
*************
.. code-block:: python
import sys
import re
from typing import Match, AnyStr, IO
# "typing.Match" describes regex matches from the re module
x: Match[str] = re.match(r'[0-9]+', "15")
# Use IO[] for functions that should accept or return any
# object that comes from an open() call (IO[] does not
# distinguish between reading, writing or other modes)
def get_sys_IO(mode: str = 'w') -> IO[str]:
if mode == 'w':
return sys.stdout
elif mode == 'r':
return sys.stdin
else:
return sys.stdout
# Forward references are useful if you want to reference a class before
# it is defined
def f(foo: A) -> int: # This will fail
...
class A:
...
# If you use the string literal 'A', it will pass as long as there is a
# class of that name later on in the file
def f(foo: 'A') -> int: # Ok
...
Decorators
**********
Decorator functions can be expressed via generics. See
:ref:`declaring-decorators` for more details.
.. code-block:: python
from typing import Any, Callable, TypeVar
F = TypeVar('F', bound=Callable[..., Any])
def bare_decorator(func: F) -> F:
...
def decorator_args(url: str) -> Callable[[F], F]:
...
|