File: cheat_sheet_py3.rst

package info (click to toggle)
mypy 0.812-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 18,596 kB
  • sloc: python: 74,869; cpp: 11,212; ansic: 3,935; makefile: 238; sh: 13
file content (344 lines) | stat: -rw-r--r-- 10,614 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
.. _cheat-sheet-py3:

Type hints cheat sheet (Python 3)
=================================

This document is a quick cheat sheet showing how the :pep:`484` type
annotation notation represents various common types in Python 3.

.. note::

   Technically many of the type annotations shown below are redundant,
   because mypy can derive them from the type of the expression.  So
   many of the examples have a dual purpose: show how to write the
   annotation, and show the inferred types.


Variables
*********

Python 3.6 introduced a syntax for annotating variables in :pep:`526`
and we use it in most examples.

.. code-block:: python

   # This is how you declare the type of a variable type in Python 3.6
   age: int = 1

   # In Python 3.5 and earlier you can use a type comment instead
   # (equivalent to the previous definition)
   age = 1  # type: int

   # You don't need to initialize a variable to annotate it
   a: int  # Ok (no value at runtime until assigned)

   # The latter is useful in conditional branches
   child: bool
   if age < 18:
       child = True
   else:
       child = False


Built-in types
**************

.. code-block:: python

   from typing import List, Set, Dict, Tuple, Optional

   # For simple built-in types, just use the name of the type
   x: int = 1
   x: float = 1.0
   x: bool = True
   x: str = "test"
   x: bytes = b"test"

   # For collections, the type of the collection item is in brackets
   # (Python 3.9+)
   x: list[int] = [1]
   x: set[int] = {6, 7}

   # In Python 3.8 and earlier, the name of the collection type is
   # capitalized, and the type is imported from 'typing'
   x: List[int] = [1]
   x: Set[int] = {6, 7}

   # Same as above, but with type comment syntax (Python 3.5 and earlier)
   x = [1]  # type: List[int]

   # For mappings, we need the types of both keys and values
   x: dict[str, float] = {'field': 2.0}  # Python 3.9+
   x: Dict[str, float] = {'field': 2.0}

   # For tuples of fixed size, we specify the types of all the elements
   x: tuple[int, str, float] = (3, "yes", 7.5)  # Python 3.9+
   x: Tuple[int, str, float] = (3, "yes", 7.5)

   # For tuples of variable size, we use one type and ellipsis
   x: tuple[int, ...] = (1, 2, 3)  # Python 3.9+
   x: Tuple[int, ...] = (1, 2, 3)

   # Use Optional[] for values that could be None
   x: Optional[str] = some_function()
   # Mypy understands a value can't be None in an if-statement
   if x is not None:
       print(x.upper())
   # If a value can never be None due to some invariants, use an assert
   assert x is not None
   print(x.upper())

Functions
*********

Python 3 supports an annotation syntax for function declarations.

.. code-block:: python

   from typing import Callable, Iterator, Union, Optional, List

   # This is how you annotate a function definition
   def stringify(num: int) -> str:
       return str(num)

   # And here's how you specify multiple arguments
   def plus(num1: int, num2: int) -> int:
       return num1 + num2

   # Add default value for an argument after the type annotation
   def f(num1: int, my_float: float = 3.5) -> float:
       return num1 + my_float

   # This is how you annotate a callable (function) value
   x: Callable[[int, float], float] = f

   # A generator function that yields ints is secretly just a function that
   # returns an iterator of ints, so that's how we annotate it
   def g(n: int) -> Iterator[int]:
       i = 0
       while i < n:
           yield i
           i += 1

   # You can of course split a function annotation over multiple lines
   def send_email(address: Union[str, List[str]],
                  sender: str,
                  cc: Optional[List[str]],
                  bcc: Optional[List[str]],
                  subject='',
                  body: Optional[List[str]] = None
                  ) -> bool:
       ...

   # An argument can be declared positional-only by giving it a name
   # starting with two underscores:
   def quux(__x: int) -> None:
       pass

   quux(3)  # Fine
   quux(__x=3)  # Error

When you're puzzled or when things are complicated
**************************************************

.. code-block:: python

   from typing import Union, Any, List, Optional, cast

   # To find out what type mypy infers for an expression anywhere in
   # your program, wrap it in reveal_type().  Mypy will print an error
   # message with the type; remove it again before running the code.
   reveal_type(1)  # -> Revealed type is 'builtins.int'

   # Use Union when something could be one of a few types
   x: List[Union[int, str]] = [3, 5, "test", "fun"]

   # Use Any if you don't know the type of something or it's too
   # dynamic to write a type for
   x: Any = mystery_function()

   # If you initialize a variable with an empty container or "None"
   # you may have to help mypy a bit by providing a type annotation
   x: List[str] = []
   x: Optional[str] = None

   # This makes each positional arg and each keyword arg a "str"
   def call(self, *args: str, **kwargs: str) -> str:
       request = make_request(*args, **kwargs)
       return self.do_api_query(request)

   # Use a "type: ignore" comment to suppress errors on a given line,
   # when your code confuses mypy or runs into an outright bug in mypy.
   # Good practice is to comment every "ignore" with a bug link
   # (in mypy, typeshed, or your own code) or an explanation of the issue.
   x = confusing_function()  # type: ignore  # https://github.com/python/mypy/issues/1167

   # "cast" is a helper function that lets you override the inferred
   # type of an expression. It's only for mypy -- there's no runtime check.
   a = [4]
   b = cast(List[int], a)  # Passes fine
   c = cast(List[str], a)  # Passes fine (no runtime check)
   reveal_type(c)  # -> Revealed type is 'builtins.list[builtins.str]'
   print(c)  # -> [4]; the object is not cast

   # If you want dynamic attributes on your class, have it override "__setattr__"
   # or "__getattr__" in a stub or in your source code.
   #
   # "__setattr__" allows for dynamic assignment to names
   # "__getattr__" allows for dynamic access to names
   class A:
       # This will allow assignment to any A.x, if x is the same type as "value"
       # (use "value: Any" to allow arbitrary types)
       def __setattr__(self, name: str, value: int) -> None: ...

       # This will allow access to any A.x, if x is compatible with the return type
       def __getattr__(self, name: str) -> int: ...

   a.foo = 42  # Works
   a.bar = 'Ex-parrot'  # Fails type checking


Standard "duck types"
*********************

In typical Python code, many functions that can take a list or a dict
as an argument only need their argument to be somehow "list-like" or
"dict-like".  A specific meaning of "list-like" or "dict-like" (or
something-else-like) is called a "duck type", and several duck types
that are common in idiomatic Python are standardized.

.. code-block:: python

   from typing import Mapping, MutableMapping, Sequence, Iterable, List, Set

   # Use Iterable for generic iterables (anything usable in "for"),
   # and Sequence where a sequence (supporting "len" and "__getitem__") is
   # required
   def f(ints: Iterable[int]) -> List[str]:
       return [str(x) for x in ints]

   f(range(1, 3))

   # Mapping describes a dict-like object (with "__getitem__") that we won't
   # mutate, and MutableMapping one (with "__setitem__") that we might
   def f(my_mapping: Mapping[int, str]) -> List[int]:
       my_mapping[5] = 'maybe'  # if we try this, mypy will throw an error...
       return list(my_mapping.keys())

   f({3: 'yes', 4: 'no'})

   def f(my_mapping: MutableMapping[int, str]) -> Set[str]:
       my_mapping[5] = 'maybe'  # ...but mypy is OK with this.
       return set(my_mapping.values())

   f({3: 'yes', 4: 'no'})


You can even make your own duck types using :ref:`protocol-types`.

Classes
*******

.. code-block:: python

   class MyClass:
       # You can optionally declare instance variables in the class body
       attr: int
       # This is an instance variable with a default value
       charge_percent: int = 100

       # The "__init__" method doesn't return anything, so it gets return
       # type "None" just like any other method that doesn't return anything
       def __init__(self) -> None:
           ...

       # For instance methods, omit type for "self"
       def my_method(self, num: int, str1: str) -> str:
           return num * str1

   # User-defined classes are valid as types in annotations
   x: MyClass = MyClass()

   # You can use the ClassVar annotation to declare a class variable
   class Car:
       seats: ClassVar[int] = 4
       passengers: ClassVar[List[str]]

   # You can also declare the type of an attribute in "__init__"
   class Box:
       def __init__(self) -> None:
           self.items: List[str] = []


Coroutines and asyncio
**********************

See :ref:`async-and-await` for the full detail on typing coroutines and asynchronous code.

.. code-block:: python

   import asyncio

   # A coroutine is typed like a normal function
   async def countdown35(tag: str, count: int) -> str:
       while count > 0:
           print('T-minus {} ({})'.format(count, tag))
           await asyncio.sleep(0.1)
           count -= 1
       return "Blastoff!"


Miscellaneous
*************

.. code-block:: python

   import sys
   import re
   from typing import Match, AnyStr, IO

   # "typing.Match" describes regex matches from the re module
   x: Match[str] = re.match(r'[0-9]+', "15")

   # Use IO[] for functions that should accept or return any
   # object that comes from an open() call (IO[] does not
   # distinguish between reading, writing or other modes)
   def get_sys_IO(mode: str = 'w') -> IO[str]:
       if mode == 'w':
           return sys.stdout
       elif mode == 'r':
           return sys.stdin
       else:
           return sys.stdout

   # Forward references are useful if you want to reference a class before
   # it is defined
   def f(foo: A) -> int:  # This will fail
       ...

   class A:
       ...

   # If you use the string literal 'A', it will pass as long as there is a
   # class of that name later on in the file
   def f(foo: 'A') -> int:  # Ok
       ...


Decorators
**********

Decorator functions can be expressed via generics. See
:ref:`declaring-decorators` for more details.

.. code-block:: python

    from typing import Any, Callable, TypeVar

    F = TypeVar('F', bound=Callable[..., Any])

    def bare_decorator(func: F) -> F:
        ...

    def decorator_args(url: str) -> Callable[[F], F]:
        ...