File: generics.rst

package info (click to toggle)
mypy 0.812-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 18,596 kB
  • sloc: python: 74,869; cpp: 11,212; ansic: 3,935; makefile: 238; sh: 13
file content (786 lines) | stat: -rw-r--r-- 24,284 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
Generics
========

This section explains how you can define your own generic classes that take
one or more type parameters, similar to built-in types such as ``List[X]``.
User-defined generics are a moderately advanced feature and you can get far
without ever using them -- feel free to skip this section and come back later.

.. _generic-classes:

Defining generic classes
************************

The built-in collection classes are generic classes. Generic types
have one or more type parameters, which can be arbitrary types. For
example, ``Dict[int, str]`` has the type parameters ``int`` and
``str``, and ``List[int]`` has a type parameter ``int``.

Programs can also define new generic classes. Here is a very simple
generic class that represents a stack:

.. code-block:: python

   from typing import TypeVar, Generic

   T = TypeVar('T')

   class Stack(Generic[T]):
       def __init__(self) -> None:
           # Create an empty list with items of type T
           self.items: List[T] = []

       def push(self, item: T) -> None:
           self.items.append(item)

       def pop(self) -> T:
           return self.items.pop()

       def empty(self) -> bool:
           return not self.items

The ``Stack`` class can be used to represent a stack of any type:
``Stack[int]``, ``Stack[Tuple[int, str]]``, etc.

Using ``Stack`` is similar to built-in container types:

.. code-block:: python

   # Construct an empty Stack[int] instance
   stack = Stack[int]()
   stack.push(2)
   stack.pop()
   stack.push('x')        # Type error

Type inference works for user-defined generic types as well:

.. code-block:: python

   def process(stack: Stack[int]) -> None: ...

   process(Stack())   # Argument has inferred type Stack[int]

Construction of instances of generic types is also type checked:

.. code-block:: python

   class Box(Generic[T]):
       def __init__(self, content: T) -> None:
           self.content = content

   Box(1)  # OK, inferred type is Box[int]
   Box[int](1)  # Also OK
   s = 'some string'
   Box[int](s)  # Type error

Generic class internals
***********************

You may wonder what happens at runtime when you index
``Stack``. Actually, indexing ``Stack`` returns essentially a copy
of ``Stack`` that returns instances of the original class on
instantiation:

.. code-block:: python

   >>> print(Stack)
   __main__.Stack
   >>> print(Stack[int])
   __main__.Stack[int]
   >>> print(Stack[int]().__class__)
   __main__.Stack

Note that built-in types :py:class:`list`, :py:class:`dict` and so on do not support
indexing in Python. This is why we have the aliases :py:class:`~typing.List`, :py:class:`~typing.Dict`
and so on in the :py:mod:`typing` module. Indexing these aliases gives
you a class that directly inherits from the target class in Python:

.. code-block:: python

   >>> from typing import List
   >>> List[int]
   typing.List[int]
   >>> List[int].__bases__
   (<class 'list'>, typing.MutableSequence)

Generic types could be instantiated or subclassed as usual classes,
but the above examples illustrate that type variables are erased at
runtime. Generic ``Stack`` instances are just ordinary
Python objects, and they have no extra runtime overhead or magic due
to being generic, other than a metaclass that overloads the indexing
operator.

.. _generic-subclasses:

Defining sub-classes of generic classes
***************************************

User-defined generic classes and generic classes defined in :py:mod:`typing`
can be used as base classes for another classes, both generic and
non-generic. For example:

.. code-block:: python

   from typing import Generic, TypeVar, Mapping, Iterator, Dict

   KT = TypeVar('KT')
   VT = TypeVar('VT')

   class MyMap(Mapping[KT, VT]):  # This is a generic subclass of Mapping
       def __getitem__(self, k: KT) -> VT:
           ...  # Implementations omitted
       def __iter__(self) -> Iterator[KT]:
           ...
       def __len__(self) -> int:
           ...

   items: MyMap[str, int]  # Okay

   class StrDict(Dict[str, str]):  # This is a non-generic subclass of Dict
       def __str__(self) -> str:
           return 'StrDict({})'.format(super().__str__())

   data: StrDict[int, int]  # Error! StrDict is not generic
   data2: StrDict  # OK

   class Receiver(Generic[T]):
       def accept(self, value: T) -> None:
           ...

   class AdvancedReceiver(Receiver[T]):
       ...

.. note::

    You have to add an explicit :py:class:`~typing.Mapping` base class
    if you want mypy to consider a user-defined class as a mapping (and
    :py:class:`~typing.Sequence` for sequences, etc.). This is because mypy doesn't use
    *structural subtyping* for these ABCs, unlike simpler protocols
    like :py:class:`~typing.Iterable`, which use :ref:`structural subtyping <protocol-types>`.

:py:class:`Generic <typing.Generic>` can be omitted from bases if there are
other base classes that include type variables, such as ``Mapping[KT, VT]``
in the above example. If you include ``Generic[...]`` in bases, then
it should list all type variables present in other bases (or more,
if needed). The order of type variables is defined by the following
rules:

* If ``Generic[...]`` is present, then the order of variables is
  always determined by their order in ``Generic[...]``.
* If there are no ``Generic[...]`` in bases, then all type variables
  are collected in the lexicographic order (i.e. by first appearance).

For example:

.. code-block:: python

   from typing import Generic, TypeVar, Any

   T = TypeVar('T')
   S = TypeVar('S')
   U = TypeVar('U')

   class One(Generic[T]): ...
   class Another(Generic[T]): ...

   class First(One[T], Another[S]): ...
   class Second(One[T], Another[S], Generic[S, U, T]): ...

   x: First[int, str]        # Here T is bound to int, S is bound to str
   y: Second[int, str, Any]  # Here T is Any, S is int, and U is str

.. _generic-functions:

Generic functions
*****************

Generic type variables can also be used to define generic functions:

.. code-block:: python

   from typing import TypeVar, Sequence

   T = TypeVar('T')      # Declare type variable

   def first(seq: Sequence[T]) -> T:   # Generic function
       return seq[0]

As with generic classes, the type variable can be replaced with any
type. That means ``first`` can be used with any sequence type, and the
return type is derived from the sequence item type. For example:

.. code-block:: python

   # Assume first defined as above.

   s = first('foo')      # s has type str.
   n = first([1, 2, 3])  # n has type int.

Note also that a single definition of a type variable (such as ``T``
above) can be used in multiple generic functions or classes. In this
example we use the same type variable in two generic functions:

.. code-block:: python

   from typing import TypeVar, Sequence

   T = TypeVar('T')      # Declare type variable

   def first(seq: Sequence[T]) -> T:
       return seq[0]

   def last(seq: Sequence[T]) -> T:
       return seq[-1]

A variable cannot have a type variable in its type unless the type
variable is bound in a containing generic class or function.

.. _generic-methods-and-generic-self:

Generic methods and generic self
********************************

You can also define generic methods — just use a type variable in the
method signature that is different from class type variables. In particular,
``self`` may also be generic, allowing a method to return the most precise
type known at the point of access.

.. note::

   This feature is experimental. Checking code with type annotations for self
   arguments is still not fully implemented. Mypy may disallow valid code or
   allow unsafe code.

In this way, for example, you can typecheck chaining of setter methods:

.. code-block:: python

   from typing import TypeVar

   T = TypeVar('T', bound='Shape')

   class Shape:
       def set_scale(self: T, scale: float) -> T:
           self.scale = scale
           return self

   class Circle(Shape):
       def set_radius(self, r: float) -> 'Circle':
           self.radius = r
           return self

   class Square(Shape):
       def set_width(self, w: float) -> 'Square':
           self.width = w
           return self

   circle = Circle().set_scale(0.5).set_radius(2.7)  # type: Circle
   square = Square().set_scale(0.5).set_width(3.2)  # type: Square

Without using generic ``self``, the last two lines could not be type-checked properly.

Other uses are factory methods, such as copy and deserialization.
For class methods, you can also define generic ``cls``, using :py:class:`Type[T] <typing.Type>`:

.. code-block:: python

   from typing import TypeVar, Tuple, Type

   T = TypeVar('T', bound='Friend')

   class Friend:
       other = None  # type: Friend

       @classmethod
       def make_pair(cls: Type[T]) -> Tuple[T, T]:
           a, b = cls(), cls()
           a.other = b
           b.other = a
           return a, b

   class SuperFriend(Friend):
       pass

   a, b = SuperFriend.make_pair()

Note that when overriding a method with generic ``self``, you must either
return a generic ``self`` too, or return an instance of the current class.
In the latter case, you must implement this method in all future subclasses.

Note also that mypy cannot always verify that the implementation of a copy
or a deserialization method returns the actual type of self. Therefore
you may need to silence mypy inside these methods (but not at the call site),
possibly by making use of the ``Any`` type.

For some advanced uses of self-types see :ref:`additional examples <advanced_self>`.

.. _variance-of-generics:

Variance of generic types
*************************

There are three main kinds of generic types with respect to subtype
relations between them: invariant, covariant, and contravariant.
Assuming that we have a pair of types ``A`` and ``B``, and ``B`` is
a subtype of ``A``, these are defined as follows:

* A generic class ``MyCovGen[T, ...]`` is called covariant in type variable
  ``T`` if ``MyCovGen[B, ...]`` is always a subtype of ``MyCovGen[A, ...]``.
* A generic class ``MyContraGen[T, ...]`` is called contravariant in type
  variable ``T`` if ``MyContraGen[A, ...]`` is always a subtype of
  ``MyContraGen[B, ...]``.
* A generic class ``MyInvGen[T, ...]`` is called invariant in ``T`` if neither
  of the above is true.

Let us illustrate this by few simple examples:

* :py:data:`~typing.Union` is covariant in all variables: ``Union[Cat, int]`` is a subtype
  of ``Union[Animal, int]``,
  ``Union[Dog, int]`` is also a subtype of ``Union[Animal, int]``, etc.
  Most immutable containers such as :py:class:`~typing.Sequence` and :py:class:`~typing.FrozenSet` are also
  covariant.
* :py:data:`~typing.Callable` is an example of type that behaves contravariant in types of
  arguments, namely ``Callable[[Employee], int]`` is a subtype of
  ``Callable[[Manager], int]``. To understand this, consider a function:

  .. code-block:: python

     def salaries(staff: List[Manager],
                  accountant: Callable[[Manager], int]) -> List[int]: ...

  This function needs a callable that can calculate a salary for managers, and
  if we give it a callable that can calculate a salary for an arbitrary
  employee, it's still safe.
* :py:class:`~typing.List` is an invariant generic type. Naively, one would think
  that it is covariant, but let us consider this code:

  .. code-block:: python

     class Shape:
         pass

     class Circle(Shape):
         def rotate(self):
             ...

     def add_one(things: List[Shape]) -> None:
         things.append(Shape())

     my_things: List[Circle] = []
     add_one(my_things)     # This may appear safe, but...
     my_things[0].rotate()  # ...this will fail

  Another example of invariant type is :py:class:`~typing.Dict`. Most mutable containers
  are invariant.

By default, mypy assumes that all user-defined generics are invariant.
To declare a given generic class as covariant or contravariant use
type variables defined with special keyword arguments ``covariant`` or
``contravariant``. For example:

.. code-block:: python

   from typing import Generic, TypeVar

   T_co = TypeVar('T_co', covariant=True)

   class Box(Generic[T_co]):  # this type is declared covariant
       def __init__(self, content: T_co) -> None:
           self._content = content

       def get_content(self) -> T_co:
           return self._content

   def look_into(box: Box[Animal]): ...

   my_box = Box(Cat())
   look_into(my_box)  # OK, but mypy would complain here for an invariant type

.. _type-variable-value-restriction:

Type variables with value restriction
*************************************

By default, a type variable can be replaced with any type. However, sometimes
it's useful to have a type variable that can only have some specific types
as its value. A typical example is a type variable that can only have values
``str`` and ``bytes``:

.. code-block:: python

   from typing import TypeVar

   AnyStr = TypeVar('AnyStr', str, bytes)

This is actually such a common type variable that :py:data:`~typing.AnyStr` is
defined in :py:mod:`typing` and we don't need to define it ourselves.

We can use :py:data:`~typing.AnyStr` to define a function that can concatenate
two strings or bytes objects, but it can't be called with other
argument types:

.. code-block:: python

   from typing import AnyStr

   def concat(x: AnyStr, y: AnyStr) -> AnyStr:
       return x + y

   concat('a', 'b')    # Okay
   concat(b'a', b'b')  # Okay
   concat(1, 2)        # Error!

Note that this is different from a union type, since combinations
of ``str`` and ``bytes`` are not accepted:

.. code-block:: python

   concat('string', b'bytes')   # Error!

In this case, this is exactly what we want, since it's not possible
to concatenate a string and a bytes object! The type checker
will reject this function:

.. code-block:: python

   def union_concat(x: Union[str, bytes], y: Union[str, bytes]) -> Union[str, bytes]:
       return x + y  # Error: can't concatenate str and bytes

Another interesting special case is calling ``concat()`` with a
subtype of ``str``:

.. code-block:: python

    class S(str): pass

    ss = concat(S('foo'), S('bar'))

You may expect that the type of ``ss`` is ``S``, but the type is
actually ``str``: a subtype gets promoted to one of the valid values
for the type variable, which in this case is ``str``. This is thus
subtly different from *bounded quantification* in languages such as
Java, where the return type would be ``S``. The way mypy implements
this is correct for ``concat``, since ``concat`` actually returns a
``str`` instance in the above example:

.. code-block:: python

    >>> print(type(ss))
    <class 'str'>

You can also use a :py:class:`~typing.TypeVar` with a restricted set of possible
values when defining a generic class. For example, mypy uses the type
:py:class:`Pattern[AnyStr] <typing.Pattern>` for the return value of :py:func:`re.compile`,
since regular expressions can be based on a string or a bytes pattern.

.. _type-variable-upper-bound:

Type variables with upper bounds
********************************

A type variable can also be restricted to having values that are
subtypes of a specific type. This type is called the upper bound of
the type variable, and is specified with the ``bound=...`` keyword
argument to :py:class:`~typing.TypeVar`.

.. code-block:: python

   from typing import TypeVar, SupportsAbs

   T = TypeVar('T', bound=SupportsAbs[float])

In the definition of a generic function that uses such a type variable
``T``, the type represented by ``T`` is assumed to be a subtype of
its upper bound, so the function can use methods of the upper bound on
values of type ``T``.

.. code-block:: python

   def largest_in_absolute_value(*xs: T) -> T:
       return max(xs, key=abs)  # Okay, because T is a subtype of SupportsAbs[float].

In a call to such a function, the type ``T`` must be replaced by a
type that is a subtype of its upper bound. Continuing the example
above,

.. code-block:: python

   largest_in_absolute_value(-3.5, 2)   # Okay, has type float.
   largest_in_absolute_value(5+6j, 7)   # Okay, has type complex.
   largest_in_absolute_value('a', 'b')  # Error: 'str' is not a subtype of SupportsAbs[float].

Type parameters of generic classes may also have upper bounds, which
restrict the valid values for the type parameter in the same way.

A type variable may not have both a value restriction (see
:ref:`type-variable-value-restriction`) and an upper bound.

.. _declaring-decorators:

Declaring decorators
********************

One common application of type variable upper bounds is in declaring a
decorator that preserves the signature of the function it decorates,
regardless of that signature.

Note that class decorators are handled differently than function decorators in
mypy: decorating a class does not erase its type, even if the decorator has
incomplete type annotations.

Here's a complete example of a function decorator:

.. code-block:: python

   from typing import Any, Callable, TypeVar, Tuple, cast

   F = TypeVar('F', bound=Callable[..., Any])

   # A decorator that preserves the signature.
   def my_decorator(func: F) -> F:
       def wrapper(*args, **kwds):
           print("Calling", func)
           return func(*args, **kwds)
       return cast(F, wrapper)

   # A decorated function.
   @my_decorator
   def foo(a: int) -> str:
       return str(a)

   a = foo(12)
   reveal_type(a)  # str
   foo('x')    # Type check error: incompatible type "str"; expected "int"

From the final block we see that the signatures of the decorated
functions ``foo()`` and ``bar()`` are the same as those of the original
functions (before the decorator is applied).

The bound on ``F`` is used so that calling the decorator on a
non-function (e.g. ``my_decorator(1)``) will be rejected.

Also note that the ``wrapper()`` function is not type-checked. Wrapper
functions are typically small enough that this is not a big
problem. This is also the reason for the :py:func:`~typing.cast` call in the
``return`` statement in ``my_decorator()``. See :ref:`casts`.

.. _decorator-factories:

Decorator factories
-------------------

Functions that take arguments and return a decorator (also called second-order decorators), are
similarly supported via generics:

.. code-block:: python

    from typing import Any, Callable, TypeVar

    F = TypeVar('F', bound=Callable[..., Any])

    def route(url: str) -> Callable[[F], F]:
        ...

    @route(url='/')
    def index(request: Any) -> str:
        return 'Hello world'

Sometimes the same decorator supports both bare calls and calls with arguments. This can be
achieved by combining with :py:func:`@overload <typing.overload>`:

.. code-block:: python

    from typing import Any, Callable, TypeVar, overload

    F = TypeVar('F', bound=Callable[..., Any])

    # Bare decorator usage
    @overload
    def atomic(__func: F) -> F: ...
    # Decorator with arguments
    @overload
    def atomic(*, savepoint: bool = True) -> Callable[[F], F]: ...

    # Implementation
    def atomic(__func: Callable[..., Any] = None, *, savepoint: bool = True):
        def decorator(func: Callable[..., Any]):
            ...  # Code goes here
        if __func is not None:
            return decorator(__func)
        else:
            return decorator

    # Usage
    @atomic
    def func1() -> None: ...

    @atomic(savepoint=False)
    def func2() -> None: ...

Generic protocols
*****************

Mypy supports generic protocols (see also :ref:`protocol-types`). Several
:ref:`predefined protocols <predefined_protocols>` are generic, such as
:py:class:`Iterable[T] <typing.Iterable>`, and you can define additional generic protocols. Generic
protocols mostly follow the normal rules for generic classes. Example:

.. code-block:: python

   from typing import TypeVar
   from typing_extensions import Protocol

   T = TypeVar('T')

   class Box(Protocol[T]):
       content: T

   def do_stuff(one: Box[str], other: Box[bytes]) -> None:
       ...

   class StringWrapper:
       def __init__(self, content: str) -> None:
           self.content = content

   class BytesWrapper:
       def __init__(self, content: bytes) -> None:
           self.content = content

   do_stuff(StringWrapper('one'), BytesWrapper(b'other'))  # OK

   x: Box[float] = ...
   y: Box[int] = ...
   x = y  # Error -- Box is invariant

The main difference between generic protocols and ordinary generic
classes is that mypy checks that the declared variances of generic
type variables in a protocol match how they are used in the protocol
definition.  The protocol in this example is rejected, since the type
variable ``T`` is used covariantly as a return type, but the type
variable is invariant:

.. code-block:: python

   from typing import TypeVar
   from typing_extensions import Protocol

   T = TypeVar('T')

   class ReadOnlyBox(Protocol[T]):  # Error: covariant type variable expected
       def content(self) -> T: ...

This example correctly uses a covariant type variable:

.. code-block:: python

   from typing import TypeVar
   from typing_extensions import Protocol

   T_co = TypeVar('T_co', covariant=True)

   class ReadOnlyBox(Protocol[T_co]):  # OK
       def content(self) -> T_co: ...

   ax: ReadOnlyBox[float] = ...
   ay: ReadOnlyBox[int] = ...
   ax = ay  # OK -- ReadOnlyBox is covariant

See :ref:`variance-of-generics` for more about variance.

Generic protocols can also be recursive. Example:

.. code-block:: python

   T = TypeVar('T')

   class Linked(Protocol[T]):
       val: T
       def next(self) -> 'Linked[T]': ...

   class L:
       val: int

       ...  # details omitted

       def next(self) -> 'L':
           ...  # details omitted

   def last(seq: Linked[T]) -> T:
       ...  # implementation omitted

   result = last(L())  # Inferred type of 'result' is 'int'

.. _generic-type-aliases:

Generic type aliases
********************

Type aliases can be generic. In this case they can be used in two ways:
Subscripted aliases are equivalent to original types with substituted type
variables, so the number of type arguments must match the number of free type variables
in the generic type alias. Unsubscripted aliases are treated as original types with free
variables replaced with ``Any``. Examples (following :pep:`PEP 484: Type aliases
<484#type-aliases>`):

.. code-block:: python

    from typing import TypeVar, Iterable, Tuple, Union, Callable

    S = TypeVar('S')

    TInt = Tuple[int, S]
    UInt = Union[S, int]
    CBack = Callable[..., S]

    def response(query: str) -> UInt[str]:  # Same as Union[str, int]
        ...
    def activate(cb: CBack[S]) -> S:        # Same as Callable[..., S]
        ...
    table_entry: TInt  # Same as Tuple[int, Any]

    T = TypeVar('T', int, float, complex)

    Vec = Iterable[Tuple[T, T]]

    def inproduct(v: Vec[T]) -> T:
        return sum(x*y for x, y in v)

    def dilate(v: Vec[T], scale: T) -> Vec[T]:
        return ((x * scale, y * scale) for x, y in v)

    v1: Vec[int] = []      # Same as Iterable[Tuple[int, int]]
    v2: Vec = []           # Same as Iterable[Tuple[Any, Any]]
    v3: Vec[int, int] = [] # Error: Invalid alias, too many type arguments!

Type aliases can be imported from modules just like other names. An
alias can also target another alias, although building complex chains
of aliases is not recommended -- this impedes code readability, thus
defeating the purpose of using aliases.  Example:

.. code-block:: python

    from typing import TypeVar, Generic, Optional
    from example1 import AliasType
    from example2 import Vec

    # AliasType and Vec are type aliases (Vec as defined above)

    def fun() -> AliasType:
        ...

    T = TypeVar('T')

    class NewVec(Vec[T]):
        ...

    for i, j in NewVec[int]():
        ...

    OIntVec = Optional[Vec[int]]

.. note::

    A type alias does not define a new type. For generic type aliases
    this means that variance of type variables used for alias definition does not
    apply to aliases. A parameterized generic alias is treated simply as an original
    type with the corresponding type variables substituted.