1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
.. _protocol-types:
Protocols and structural subtyping
==================================
Mypy supports two ways of deciding whether two classes are compatible
as types: nominal subtyping and structural subtyping. *Nominal*
subtyping is strictly based on the class hierarchy. If class ``D``
inherits class ``C``, it's also a subtype of ``C``, and instances of
``D`` can be used when ``C`` instances are expected. This form of
subtyping is used by default in mypy, since it's easy to understand
and produces clear and concise error messages, and since it matches
how the native :py:func:`isinstance <isinstance>` check works -- based on class
hierarchy. *Structural* subtyping can also be useful. Class ``D`` is
a structural subtype of class ``C`` if the former has all attributes
and methods of the latter, and with compatible types.
Structural subtyping can be seen as a static equivalent of duck
typing, which is well known to Python programmers. Mypy provides
support for structural subtyping via protocol classes described
below. See :pep:`544` for the detailed specification of protocols
and structural subtyping in Python.
.. _predefined_protocols:
Predefined protocols
********************
The :py:mod:`typing` module defines various protocol classes that correspond
to common Python protocols, such as :py:class:`Iterable[T] <typing.Iterable>`. If a class
defines a suitable :py:meth:`__iter__ <object.__iter__>` method, mypy understands that it
implements the iterable protocol and is compatible with :py:class:`Iterable[T] <typing.Iterable>`.
For example, ``IntList`` below is iterable, over ``int`` values:
.. code-block:: python
from typing import Iterator, Iterable, Optional
class IntList:
def __init__(self, value: int, next: Optional['IntList']) -> None:
self.value = value
self.next = next
def __iter__(self) -> Iterator[int]:
current = self
while current:
yield current.value
current = current.next
def print_numbered(items: Iterable[int]) -> None:
for n, x in enumerate(items):
print(n + 1, x)
x = IntList(3, IntList(5, None))
print_numbered(x) # OK
print_numbered([4, 5]) # Also OK
The subsections below introduce all built-in protocols defined in
:py:mod:`typing` and the signatures of the corresponding methods you need to define
to implement each protocol (the signatures can be left out, as always, but mypy
won't type check unannotated methods).
Iteration protocols
...................
The iteration protocols are useful in many contexts. For example, they allow
iteration of objects in for loops.
Iterable[T]
-----------
The :ref:`example above <predefined_protocols>` has a simple implementation of an
:py:meth:`__iter__ <object.__iter__>` method.
.. code-block:: python
def __iter__(self) -> Iterator[T]
See also :py:class:`~typing.Iterable`.
Iterator[T]
-----------
.. code-block:: python
def __next__(self) -> T
def __iter__(self) -> Iterator[T]
See also :py:class:`~typing.Iterator`.
Collection protocols
....................
Many of these are implemented by built-in container types such as
:py:class:`list` and :py:class:`dict`, and these are also useful for user-defined
collection objects.
Sized
-----
This is a type for objects that support :py:func:`len(x) <len>`.
.. code-block:: python
def __len__(self) -> int
See also :py:class:`~typing.Sized`.
Container[T]
------------
This is a type for objects that support the ``in`` operator.
.. code-block:: python
def __contains__(self, x: object) -> bool
See also :py:class:`~typing.Container`.
Collection[T]
-------------
.. code-block:: python
def __len__(self) -> int
def __iter__(self) -> Iterator[T]
def __contains__(self, x: object) -> bool
See also :py:class:`~typing.Collection`.
One-off protocols
.................
These protocols are typically only useful with a single standard
library function or class.
Reversible[T]
-------------
This is a type for objects that support :py:func:`reversed(x) <reversed>`.
.. code-block:: python
def __reversed__(self) -> Iterator[T]
See also :py:class:`~typing.Reversible`.
SupportsAbs[T]
--------------
This is a type for objects that support :py:func:`abs(x) <abs>`. ``T`` is the type of
value returned by :py:func:`abs(x) <abs>`.
.. code-block:: python
def __abs__(self) -> T
See also :py:class:`~typing.SupportsAbs`.
SupportsBytes
-------------
This is a type for objects that support :py:class:`bytes(x) <bytes>`.
.. code-block:: python
def __bytes__(self) -> bytes
See also :py:class:`~typing.SupportsBytes`.
.. _supports-int-etc:
SupportsComplex
---------------
This is a type for objects that support :py:class:`complex(x) <complex>`. Note that no arithmetic operations
are supported.
.. code-block:: python
def __complex__(self) -> complex
See also :py:class:`~typing.SupportsComplex`.
SupportsFloat
-------------
This is a type for objects that support :py:class:`float(x) <float>`. Note that no arithmetic operations
are supported.
.. code-block:: python
def __float__(self) -> float
See also :py:class:`~typing.SupportsFloat`.
SupportsInt
-----------
This is a type for objects that support :py:class:`int(x) <int>`. Note that no arithmetic operations
are supported.
.. code-block:: python
def __int__(self) -> int
See also :py:class:`~typing.SupportsInt`.
SupportsRound[T]
----------------
This is a type for objects that support :py:func:`round(x) <round>`.
.. code-block:: python
def __round__(self) -> T
See also :py:class:`~typing.SupportsRound`.
Async protocols
...............
These protocols can be useful in async code. See :ref:`async-and-await`
for more information.
Awaitable[T]
------------
.. code-block:: python
def __await__(self) -> Generator[Any, None, T]
See also :py:class:`~typing.Awaitable`.
AsyncIterable[T]
----------------
.. code-block:: python
def __aiter__(self) -> AsyncIterator[T]
See also :py:class:`~typing.AsyncIterable`.
AsyncIterator[T]
----------------
.. code-block:: python
def __anext__(self) -> Awaitable[T]
def __aiter__(self) -> AsyncIterator[T]
See also :py:class:`~typing.AsyncIterator`.
Context manager protocols
.........................
There are two protocols for context managers -- one for regular context
managers and one for async ones. These allow defining objects that can
be used in ``with`` and ``async with`` statements.
ContextManager[T]
-----------------
.. code-block:: python
def __enter__(self) -> T
def __exit__(self,
exc_type: Optional[Type[BaseException]],
exc_value: Optional[BaseException],
traceback: Optional[TracebackType]) -> Optional[bool]
See also :py:class:`~typing.ContextManager`.
AsyncContextManager[T]
----------------------
.. code-block:: python
def __aenter__(self) -> Awaitable[T]
def __aexit__(self,
exc_type: Optional[Type[BaseException]],
exc_value: Optional[BaseException],
traceback: Optional[TracebackType]) -> Awaitable[Optional[bool]]
See also :py:class:`~typing.AsyncContextManager`.
Simple user-defined protocols
*****************************
You can define your own protocol class by inheriting the special ``Protocol``
class:
.. code-block:: python
from typing import Iterable
from typing_extensions import Protocol
class SupportsClose(Protocol):
def close(self) -> None:
... # Empty method body (explicit '...')
class Resource: # No SupportsClose base class!
# ... some methods ...
def close(self) -> None:
self.resource.release()
def close_all(items: Iterable[SupportsClose]) -> None:
for item in items:
item.close()
close_all([Resource(), open('some/file')]) # Okay!
``Resource`` is a subtype of the ``SupportsClose`` protocol since it defines
a compatible ``close`` method. Regular file objects returned by :py:func:`open` are
similarly compatible with the protocol, as they support ``close()``.
.. note::
The ``Protocol`` base class is provided in the ``typing_extensions``
package for Python 2.7 and 3.4-3.7. Starting with Python 3.8, ``Protocol``
is included in the ``typing`` module.
Defining subprotocols and subclassing protocols
***********************************************
You can also define subprotocols. Existing protocols can be extended
and merged using multiple inheritance. Example:
.. code-block:: python
# ... continuing from the previous example
class SupportsRead(Protocol):
def read(self, amount: int) -> bytes: ...
class TaggedReadableResource(SupportsClose, SupportsRead, Protocol):
label: str
class AdvancedResource(Resource):
def __init__(self, label: str) -> None:
self.label = label
def read(self, amount: int) -> bytes:
# some implementation
...
resource: TaggedReadableResource
resource = AdvancedResource('handle with care') # OK
Note that inheriting from an existing protocol does not automatically
turn the subclass into a protocol -- it just creates a regular
(non-protocol) class or ABC that implements the given protocol (or
protocols). The ``Protocol`` base class must always be explicitly
present if you are defining a protocol:
.. code-block:: python
class NotAProtocol(SupportsClose): # This is NOT a protocol
new_attr: int
class Concrete:
new_attr: int = 0
def close(self) -> None:
...
# Error: nominal subtyping used by default
x: NotAProtocol = Concrete() # Error!
You can also include default implementations of methods in
protocols. If you explicitly subclass these protocols you can inherit
these default implementations. Explicitly including a protocol as a
base class is also a way of documenting that your class implements a
particular protocol, and it forces mypy to verify that your class
implementation is actually compatible with the protocol.
.. note::
You can use Python 3.6 variable annotations (:pep:`526`)
to declare protocol attributes. On Python 2.7 and earlier Python 3
versions you can use type comments and properties.
Recursive protocols
*******************
Protocols can be recursive (self-referential) and mutually
recursive. This is useful for declaring abstract recursive collections
such as trees and linked lists:
.. code-block:: python
from typing import TypeVar, Optional
from typing_extensions import Protocol
class TreeLike(Protocol):
value: int
@property
def left(self) -> Optional['TreeLike']: ...
@property
def right(self) -> Optional['TreeLike']: ...
class SimpleTree:
def __init__(self, value: int) -> None:
self.value = value
self.left: Optional['SimpleTree'] = None
self.right: Optional['SimpleTree'] = None
root: TreeLike = SimpleTree(0) # OK
Using isinstance() with protocols
*********************************
You can use a protocol class with :py:func:`isinstance` if you decorate it
with the ``@runtime_checkable`` class decorator. The decorator adds
support for basic runtime structural checks:
.. code-block:: python
from typing_extensions import Protocol, runtime_checkable
@runtime_checkable
class Portable(Protocol):
handles: int
class Mug:
def __init__(self) -> None:
self.handles = 1
mug = Mug()
if isinstance(mug, Portable):
use(mug.handles) # Works statically and at runtime
:py:func:`isinstance` also works with the :ref:`predefined protocols <predefined_protocols>`
in :py:mod:`typing` such as :py:class:`~typing.Iterable`.
.. note::
:py:func:`isinstance` with protocols is not completely safe at runtime.
For example, signatures of methods are not checked. The runtime
implementation only checks that all protocol members are defined.
.. _callback_protocols:
Callback protocols
******************
Protocols can be used to define flexible callback types that are hard
(or even impossible) to express using the :py:data:`Callable[...] <typing.Callable>` syntax, such as variadic,
overloaded, and complex generic callbacks. They are defined with a special :py:meth:`__call__ <object.__call__>`
member:
.. code-block:: python
from typing import Optional, Iterable, List
from typing_extensions import Protocol
class Combiner(Protocol):
def __call__(self, *vals: bytes, maxlen: Optional[int] = None) -> List[bytes]: ...
def batch_proc(data: Iterable[bytes], cb_results: Combiner) -> bytes:
for item in data:
...
def good_cb(*vals: bytes, maxlen: Optional[int] = None) -> List[bytes]:
...
def bad_cb(*vals: bytes, maxitems: Optional[int]) -> List[bytes]:
...
batch_proc([], good_cb) # OK
batch_proc([], bad_cb) # Error! Argument 2 has incompatible type because of
# different name and kind in the callback
Callback protocols and :py:data:`~typing.Callable` types can be used interchangeably.
Keyword argument names in :py:meth:`__call__ <object.__call__>` methods must be identical, unless
a double underscore prefix is used. For example:
.. code-block:: python
from typing import Callable, TypeVar
from typing_extensions import Protocol
T = TypeVar('T')
class Copy(Protocol):
def __call__(self, __origin: T) -> T: ...
copy_a: Callable[[T], T]
copy_b: Copy
copy_a = copy_b # OK
copy_b = copy_a # Also OK
|