File: ll_builder.py

package info (click to toggle)
mypy 0.812-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 18,596 kB
  • sloc: python: 74,869; cpp: 11,212; ansic: 3,935; makefile: 238; sh: 13
file content (1160 lines) | stat: -rw-r--r-- 52,183 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
"""A "low-level" IR builder class.

LowLevelIRBuilder provides core abstractions we use for constructing
IR as well as a number of higher-level ones (accessing attributes,
calling functions and methods, and coercing between types, for
example). The core principle of the low-level IR builder is that all
of its facilities operate solely on the IR level and not the AST
level---it has *no knowledge* of mypy types or expressions.
"""

from typing import (
    Callable, List, Tuple, Optional, Union, Sequence, cast
)

from mypy.nodes import ARG_POS, ARG_NAMED, ARG_STAR, ARG_STAR2, op_methods
from mypy.types import AnyType, TypeOfAny
from mypy.checkexpr import map_actuals_to_formals

from mypyc.ir.ops import (
    BasicBlock, Op, Integer, Value, Register, Assign, Branch, Goto, Call, Box, Unbox, Cast,
    GetAttr, LoadStatic, MethodCall, CallC, Truncate,
    RaiseStandardError, Unreachable, LoadErrorValue, LoadGlobal,
    NAMESPACE_TYPE, NAMESPACE_MODULE, NAMESPACE_STATIC, IntOp, GetElementPtr,
    LoadMem, ComparisonOp, LoadAddress, TupleGet, SetMem, ERR_NEVER, ERR_FALSE
)
from mypyc.ir.rtypes import (
    RType, RUnion, RInstance, optional_value_type, int_rprimitive, float_rprimitive,
    bool_rprimitive, list_rprimitive, str_rprimitive, is_none_rprimitive, object_rprimitive,
    c_pyssize_t_rprimitive, is_short_int_rprimitive, is_tagged, PyVarObject, short_int_rprimitive,
    is_list_rprimitive, is_tuple_rprimitive, is_dict_rprimitive, is_set_rprimitive, PySetObject,
    none_rprimitive, RTuple, is_bool_rprimitive, is_str_rprimitive, c_int_rprimitive,
    pointer_rprimitive, PyObject, PyListObject, bit_rprimitive, is_bit_rprimitive
)
from mypyc.ir.func_ir import FuncDecl, FuncSignature
from mypyc.ir.class_ir import ClassIR, all_concrete_classes
from mypyc.common import (
    FAST_ISINSTANCE_MAX_SUBCLASSES, MAX_LITERAL_SHORT_INT,
    STATIC_PREFIX, PLATFORM_SIZE
)
from mypyc.primitives.registry import (
    method_call_ops, CFunctionDescription, function_ops,
    binary_ops, unary_ops, ERR_NEG_INT
)
from mypyc.primitives.list_ops import (
    list_extend_op, new_list_op
)
from mypyc.primitives.tuple_ops import list_tuple_op, new_tuple_op
from mypyc.primitives.dict_ops import (
    dict_update_in_display_op, dict_new_op, dict_build_op, dict_size_op
)
from mypyc.primitives.generic_ops import (
    py_getattr_op, py_call_op, py_call_with_kwargs_op, py_method_call_op, generic_len_op
)
from mypyc.primitives.misc_ops import (
    none_object_op, fast_isinstance_op, bool_op
)
from mypyc.primitives.int_ops import int_comparison_op_mapping
from mypyc.primitives.exc_ops import err_occurred_op, keep_propagating_op
from mypyc.primitives.str_ops import unicode_compare
from mypyc.primitives.set_ops import new_set_op
from mypyc.rt_subtype import is_runtime_subtype
from mypyc.subtype import is_subtype
from mypyc.sametype import is_same_type
from mypyc.irbuild.mapper import Mapper


DictEntry = Tuple[Optional[Value], Value]


class LowLevelIRBuilder:
    def __init__(
        self,
        current_module: str,
        mapper: Mapper,
    ) -> None:
        self.current_module = current_module
        self.mapper = mapper
        self.args = []  # type: List[Register]
        self.blocks = []  # type: List[BasicBlock]
        # Stack of except handler entry blocks
        self.error_handlers = [None]  # type: List[Optional[BasicBlock]]

    # Basic operations

    def add(self, op: Op) -> Value:
        """Add an op."""
        assert not self.blocks[-1].terminated, "Can't add to finished block"
        self.blocks[-1].ops.append(op)
        return op

    def goto(self, target: BasicBlock) -> None:
        """Add goto to a basic block."""
        if not self.blocks[-1].terminated:
            self.add(Goto(target))

    def activate_block(self, block: BasicBlock) -> None:
        """Add a basic block and make it the active one (target of adds)."""
        if self.blocks:
            assert self.blocks[-1].terminated

        block.error_handler = self.error_handlers[-1]
        self.blocks.append(block)

    def goto_and_activate(self, block: BasicBlock) -> None:
        """Add goto a block and make it the active block."""
        self.goto(block)
        self.activate_block(block)

    def push_error_handler(self, handler: Optional[BasicBlock]) -> None:
        self.error_handlers.append(handler)

    def pop_error_handler(self) -> Optional[BasicBlock]:
        return self.error_handlers.pop()

    def self(self) -> Register:
        """Return reference to the 'self' argument.

        This only works in a method.
        """
        return self.args[0]

    # Type conversions

    def box(self, src: Value) -> Value:
        if src.type.is_unboxed:
            return self.add(Box(src))
        else:
            return src

    def unbox_or_cast(self, src: Value, target_type: RType, line: int) -> Value:
        if target_type.is_unboxed:
            return self.add(Unbox(src, target_type, line))
        else:
            return self.add(Cast(src, target_type, line))

    def coerce(self, src: Value, target_type: RType, line: int, force: bool = False) -> Value:
        """Generate a coercion/cast from one type to other (only if needed).

        For example, int -> object boxes the source int; int -> int emits nothing;
        object -> int unboxes the object. All conversions preserve object value.

        If force is true, always generate an op (even if it is just an assignment) so
        that the result will have exactly target_type as the type.

        Returns the register with the converted value (may be same as src).
        """
        if src.type.is_unboxed and not target_type.is_unboxed:
            return self.box(src)
        if ((src.type.is_unboxed and target_type.is_unboxed)
                and not is_runtime_subtype(src.type, target_type)):
            # To go from one unboxed type to another, we go through a boxed
            # in-between value, for simplicity.
            tmp = self.box(src)
            return self.unbox_or_cast(tmp, target_type, line)
        if ((not src.type.is_unboxed and target_type.is_unboxed)
                or not is_subtype(src.type, target_type)):
            return self.unbox_or_cast(src, target_type, line)
        elif force:
            tmp = Register(target_type)
            self.add(Assign(tmp, src))
            return tmp
        return src

    # Attribute access

    def get_attr(self, obj: Value, attr: str, result_type: RType, line: int) -> Value:
        """Get a native or Python attribute of an object."""
        if (isinstance(obj.type, RInstance) and obj.type.class_ir.is_ext_class
                and obj.type.class_ir.has_attr(attr)):
            return self.add(GetAttr(obj, attr, line))
        elif isinstance(obj.type, RUnion):
            return self.union_get_attr(obj, obj.type, attr, result_type, line)
        else:
            return self.py_get_attr(obj, attr, line)

    def union_get_attr(self,
                       obj: Value,
                       rtype: RUnion,
                       attr: str,
                       result_type: RType,
                       line: int) -> Value:
        """Get an attribute of an object with a union type."""

        def get_item_attr(value: Value) -> Value:
            return self.get_attr(value, attr, result_type, line)

        return self.decompose_union_helper(obj, rtype, result_type, get_item_attr, line)

    def py_get_attr(self, obj: Value, attr: str, line: int) -> Value:
        """Get a Python attribute (slow).

        Prefer get_attr() which generates optimized code for native classes.
        """
        key = self.load_static_unicode(attr)
        return self.call_c(py_getattr_op, [obj, key], line)

    # isinstance() checks

    def isinstance_helper(self, obj: Value, class_irs: List[ClassIR], line: int) -> Value:
        """Fast path for isinstance() that checks against a list of native classes."""
        if not class_irs:
            return self.false()
        ret = self.isinstance_native(obj, class_irs[0], line)
        for class_ir in class_irs[1:]:
            def other() -> Value:
                return self.isinstance_native(obj, class_ir, line)
            ret = self.shortcircuit_helper('or', bool_rprimitive, lambda: ret, other, line)
        return ret

    def type_is_op(self, obj: Value, type_obj: Value, line: int) -> Value:
        ob_type_address = self.add(GetElementPtr(obj, PyObject, 'ob_type', line))
        ob_type = self.add(LoadMem(object_rprimitive, ob_type_address, obj))
        return self.add(ComparisonOp(ob_type, type_obj, ComparisonOp.EQ, line))

    def isinstance_native(self, obj: Value, class_ir: ClassIR, line: int) -> Value:
        """Fast isinstance() check for a native class.

        If there are three or fewer concrete (non-trait) classes among the class
        and all its children, use even faster type comparison checks `type(obj)
        is typ`.
        """
        concrete = all_concrete_classes(class_ir)
        if concrete is None or len(concrete) > FAST_ISINSTANCE_MAX_SUBCLASSES + 1:
            return self.call_c(fast_isinstance_op,
                               [obj, self.get_native_type(class_ir)],
                               line)
        if not concrete:
            # There can't be any concrete instance that matches this.
            return self.false()
        type_obj = self.get_native_type(concrete[0])
        ret = self.type_is_op(obj, type_obj, line)
        for c in concrete[1:]:
            def other() -> Value:
                return self.type_is_op(obj, self.get_native_type(c), line)
            ret = self.shortcircuit_helper('or', bool_rprimitive, lambda: ret, other, line)
        return ret

    # Calls

    def py_call(self,
                function: Value,
                arg_values: List[Value],
                line: int,
                arg_kinds: Optional[List[int]] = None,
                arg_names: Optional[Sequence[Optional[str]]] = None) -> Value:
        """Call a Python function (non-native and slow).

        Use py_call_op or py_call_with_kwargs_op for Python function call.
        """
        # If all arguments are positional, we can use py_call_op.
        if (arg_kinds is None) or all(kind == ARG_POS for kind in arg_kinds):
            return self.call_c(py_call_op, [function] + arg_values, line)

        # Otherwise fallback to py_call_with_kwargs_op.
        assert arg_names is not None

        pos_arg_values = []
        kw_arg_key_value_pairs = []  # type: List[DictEntry]
        star_arg_values = []
        for value, kind, name in zip(arg_values, arg_kinds, arg_names):
            if kind == ARG_POS:
                pos_arg_values.append(value)
            elif kind == ARG_NAMED:
                assert name is not None
                key = self.load_static_unicode(name)
                kw_arg_key_value_pairs.append((key, value))
            elif kind == ARG_STAR:
                star_arg_values.append(value)
            elif kind == ARG_STAR2:
                # NOTE: mypy currently only supports a single ** arg, but python supports multiple.
                # This code supports multiple primarily to make the logic easier to follow.
                kw_arg_key_value_pairs.append((None, value))
            else:
                assert False, ("Argument kind should not be possible:", kind)

        if len(star_arg_values) == 0:
            # We can directly construct a tuple if there are no star args.
            pos_args_tuple = self.new_tuple(pos_arg_values, line)
        else:
            # Otherwise we construct a list and call extend it with the star args, since tuples
            # don't have an extend method.
            pos_args_list = self.new_list_op(pos_arg_values, line)
            for star_arg_value in star_arg_values:
                self.call_c(list_extend_op, [pos_args_list, star_arg_value], line)
            pos_args_tuple = self.call_c(list_tuple_op, [pos_args_list], line)

        kw_args_dict = self.make_dict(kw_arg_key_value_pairs, line)

        return self.call_c(
            py_call_with_kwargs_op, [function, pos_args_tuple, kw_args_dict], line)

    def py_method_call(self,
                       obj: Value,
                       method_name: str,
                       arg_values: List[Value],
                       line: int,
                       arg_kinds: Optional[List[int]],
                       arg_names: Optional[Sequence[Optional[str]]]) -> Value:
        """Call a Python method (non-native and slow)."""
        if (arg_kinds is None) or all(kind == ARG_POS for kind in arg_kinds):
            method_name_reg = self.load_static_unicode(method_name)
            return self.call_c(py_method_call_op, [obj, method_name_reg] + arg_values, line)
        else:
            method = self.py_get_attr(obj, method_name, line)
            return self.py_call(method, arg_values, line, arg_kinds=arg_kinds, arg_names=arg_names)

    def call(self,
             decl: FuncDecl,
             args: Sequence[Value],
             arg_kinds: List[int],
             arg_names: Sequence[Optional[str]],
             line: int) -> Value:
        """Call a native function."""
        # Normalize args to positionals.
        args = self.native_args_to_positional(
            args, arg_kinds, arg_names, decl.sig, line)
        return self.add(Call(decl, args, line))

    def native_args_to_positional(self,
                                  args: Sequence[Value],
                                  arg_kinds: List[int],
                                  arg_names: Sequence[Optional[str]],
                                  sig: FuncSignature,
                                  line: int) -> List[Value]:
        """Prepare arguments for a native call.

        Given args/kinds/names and a target signature for a native call, map
        keyword arguments to their appropriate place in the argument list,
        fill in error values for unspecified default arguments,
        package arguments that will go into *args/**kwargs into a tuple/dict,
        and coerce arguments to the appropriate type.
        """

        sig_arg_kinds = [arg.kind for arg in sig.args]
        sig_arg_names = [arg.name for arg in sig.args]
        formal_to_actual = map_actuals_to_formals(arg_kinds,
                                                  arg_names,
                                                  sig_arg_kinds,
                                                  sig_arg_names,
                                                  lambda n: AnyType(TypeOfAny.special_form))

        # Flatten out the arguments, loading error values for default
        # arguments, constructing tuples/dicts for star args, and
        # coercing everything to the expected type.
        output_args = []
        for lst, arg in zip(formal_to_actual, sig.args):
            output_arg = None
            if arg.kind == ARG_STAR:
                items = [args[i] for i in lst]
                output_arg = self.new_tuple(items, line)
            elif arg.kind == ARG_STAR2:
                dict_entries = [(self.load_static_unicode(cast(str, arg_names[i])), args[i])
                                for i in lst]
                output_arg = self.make_dict(dict_entries, line)
            elif not lst:
                output_arg = self.add(LoadErrorValue(arg.type, is_borrowed=True))
            else:
                output_arg = args[lst[0]]
            output_args.append(self.coerce(output_arg, arg.type, line))

        return output_args

    def gen_method_call(self,
                        base: Value,
                        name: str,
                        arg_values: List[Value],
                        result_type: Optional[RType],
                        line: int,
                        arg_kinds: Optional[List[int]] = None,
                        arg_names: Optional[List[Optional[str]]] = None) -> Value:
        """Generate either a native or Python method call."""
        # If arg_kinds contains values other than arg_pos and arg_named, then fallback to
        # Python method call.
        if (arg_kinds is not None
                and not all(kind in (ARG_POS, ARG_NAMED) for kind in arg_kinds)):
            return self.py_method_call(base, name, arg_values, base.line, arg_kinds, arg_names)

        # If the base type is one of ours, do a MethodCall
        if (isinstance(base.type, RInstance) and base.type.class_ir.is_ext_class
                and not base.type.class_ir.builtin_base):
            if base.type.class_ir.has_method(name):
                decl = base.type.class_ir.method_decl(name)
                if arg_kinds is None:
                    assert arg_names is None, "arg_kinds not present but arg_names is"
                    arg_kinds = [ARG_POS for _ in arg_values]
                    arg_names = [None for _ in arg_values]
                else:
                    assert arg_names is not None, "arg_kinds present but arg_names is not"

                # Normalize args to positionals.
                assert decl.bound_sig
                arg_values = self.native_args_to_positional(
                    arg_values, arg_kinds, arg_names, decl.bound_sig, line)
                return self.add(MethodCall(base, name, arg_values, line))
            elif base.type.class_ir.has_attr(name):
                function = self.add(GetAttr(base, name, line))
                return self.py_call(function, arg_values, line,
                                    arg_kinds=arg_kinds, arg_names=arg_names)

        elif isinstance(base.type, RUnion):
            return self.union_method_call(base, base.type, name, arg_values, result_type, line,
                                          arg_kinds, arg_names)

        # Try to do a special-cased method call
        if not arg_kinds or arg_kinds == [ARG_POS] * len(arg_values):
            target = self.translate_special_method_call(base, name, arg_values, result_type, line)
            if target:
                return target

        # Fall back to Python method call
        return self.py_method_call(base, name, arg_values, line, arg_kinds, arg_names)

    def union_method_call(self,
                          base: Value,
                          obj_type: RUnion,
                          name: str,
                          arg_values: List[Value],
                          return_rtype: Optional[RType],
                          line: int,
                          arg_kinds: Optional[List[int]],
                          arg_names: Optional[List[Optional[str]]]) -> Value:
        """Generate a method call with a union type for the object."""
        # Union method call needs a return_rtype for the type of the output register.
        # If we don't have one, use object_rprimitive.
        return_rtype = return_rtype or object_rprimitive

        def call_union_item(value: Value) -> Value:
            return self.gen_method_call(value, name, arg_values, return_rtype, line,
                                        arg_kinds, arg_names)

        return self.decompose_union_helper(base, obj_type, return_rtype, call_union_item, line)

    # Loading various values

    def none(self) -> Value:
        """Load unboxed None value (type: none_rprimitive)."""
        return Integer(1, none_rprimitive)

    def true(self) -> Value:
        """Load unboxed True value (type: bool_rprimitive)."""
        return Integer(1,  bool_rprimitive)

    def false(self) -> Value:
        """Load unboxed False value (type: bool_rprimitive)."""
        return Integer(0, bool_rprimitive)

    def none_object(self) -> Value:
        """Load Python None value (type: object_rprimitive)."""
        return self.add(LoadAddress(none_object_op.type, none_object_op.src, line=-1))

    def literal_static_name(self, value: Union[int, float, complex, str, bytes]) -> str:
        return STATIC_PREFIX + self.mapper.literal_static_name(self.current_module, value)

    def load_static_int(self, value: int) -> Value:
        """Loads a static integer Python 'int' object into a register."""
        if abs(value) > MAX_LITERAL_SHORT_INT:
            identifier = self.literal_static_name(value)
            return self.add(LoadGlobal(int_rprimitive, identifier, ann=value))
        else:
            return Integer(value)

    def load_static_float(self, value: float) -> Value:
        """Loads a static float value into a register."""
        identifier = self.literal_static_name(value)
        return self.add(LoadGlobal(float_rprimitive, identifier, ann=value))

    def load_static_bytes(self, value: bytes) -> Value:
        """Loads a static bytes value into a register."""
        identifier = self.literal_static_name(value)
        return self.add(LoadGlobal(object_rprimitive, identifier, ann=value))

    def load_static_complex(self, value: complex) -> Value:
        """Loads a static complex value into a register."""
        identifier = self.literal_static_name(value)
        return self.add(LoadGlobal(object_rprimitive, identifier, ann=value))

    def load_static_unicode(self, value: str) -> Value:
        """Loads a static unicode value into a register.

        This is useful for more than just unicode literals; for example, method calls
        also require a PyObject * form for the name of the method.
        """
        identifier = self.literal_static_name(value)
        return self.add(LoadGlobal(str_rprimitive, identifier, ann=value))

    def load_static_checked(self, typ: RType, identifier: str, module_name: Optional[str] = None,
                            namespace: str = NAMESPACE_STATIC,
                            line: int = -1,
                            error_msg: Optional[str] = None) -> Value:
        if error_msg is None:
            error_msg = "name '{}' is not defined".format(identifier)
        ok_block, error_block = BasicBlock(), BasicBlock()
        value = self.add(LoadStatic(typ, identifier, module_name, namespace, line=line))
        self.add(Branch(value, error_block, ok_block, Branch.IS_ERROR, rare=True))
        self.activate_block(error_block)
        self.add(RaiseStandardError(RaiseStandardError.NAME_ERROR,
                                    error_msg,
                                    line))
        self.add(Unreachable())
        self.activate_block(ok_block)
        return value

    def load_module(self, name: str) -> Value:
        return self.add(LoadStatic(object_rprimitive, name, namespace=NAMESPACE_MODULE))

    def get_native_type(self, cls: ClassIR) -> Value:
        """Load native type object."""
        fullname = '%s.%s' % (cls.module_name, cls.name)
        return self.load_native_type_object(fullname)

    def load_native_type_object(self, fullname: str) -> Value:
        module, name = fullname.rsplit('.', 1)
        return self.add(LoadStatic(object_rprimitive, name, module, NAMESPACE_TYPE))

    # Other primitive operations
    def binary_op(self,
                  lreg: Value,
                  rreg: Value,
                  op: str,
                  line: int) -> Value:
        ltype = lreg.type
        rtype = rreg.type

        # Special case tuple comparison here so that nested tuples can be supported
        if isinstance(ltype, RTuple) and isinstance(rtype, RTuple) and op in ('==', '!='):
            return self.compare_tuples(lreg, rreg, op, line)

        # Special case == and != when we can resolve the method call statically
        if op in ('==', '!='):
            value = self.translate_eq_cmp(lreg, rreg, op, line)
            if value is not None:
                return value

        # Special case various ops
        if op in ('is', 'is not'):
            return self.translate_is_op(lreg, rreg, op, line)
        if is_str_rprimitive(ltype) and is_str_rprimitive(rtype) and op in ('==', '!='):
            return self.compare_strings(lreg, rreg, op, line)
        if is_tagged(ltype) and is_tagged(rtype) and op in int_comparison_op_mapping:
            return self.compare_tagged(lreg, rreg, op, line)
        if is_bool_rprimitive(ltype) and is_bool_rprimitive(rtype) and op in (
                '&', '&=', '|', '|=', '^', '^='):
            return self.bool_bitwise_op(lreg, rreg, op[0], line)

        call_c_ops_candidates = binary_ops.get(op, [])
        target = self.matching_call_c(call_c_ops_candidates, [lreg, rreg], line)
        assert target, 'Unsupported binary operation: %s' % op
        return target

    def check_tagged_short_int(self, val: Value, line: int, negated: bool = False) -> Value:
        """Check if a tagged integer is a short integer.

        Return the result of the check (value of type 'bit').
        """
        int_tag = Integer(1, c_pyssize_t_rprimitive, line)
        bitwise_and = self.int_op(c_pyssize_t_rprimitive, val, int_tag, IntOp.AND, line)
        zero = Integer(0, c_pyssize_t_rprimitive, line)
        op = ComparisonOp.NEQ if negated else ComparisonOp.EQ
        check = self.comparison_op(bitwise_and, zero, op, line)
        return check

    def compare_tagged(self, lhs: Value, rhs: Value, op: str, line: int) -> Value:
        """Compare two tagged integers using given operator (value context)."""
        # generate fast binary logic ops on short ints
        if is_short_int_rprimitive(lhs.type) and is_short_int_rprimitive(rhs.type):
            return self.comparison_op(lhs, rhs, int_comparison_op_mapping[op][0], line)
        op_type, c_func_desc, negate_result, swap_op = int_comparison_op_mapping[op]
        result = Register(bool_rprimitive)
        short_int_block, int_block, out = BasicBlock(), BasicBlock(), BasicBlock()
        check_lhs = self.check_tagged_short_int(lhs, line)
        if op in ("==", "!="):
            check = check_lhs
        else:
            # for non-equality logical ops (less/greater than, etc.), need to check both sides
            check_rhs = self.check_tagged_short_int(rhs, line)
            check = self.int_op(bit_rprimitive, check_lhs, check_rhs, IntOp.AND, line)
        self.add(Branch(check, short_int_block, int_block, Branch.BOOL))
        self.activate_block(short_int_block)
        eq = self.comparison_op(lhs, rhs, op_type, line)
        self.add(Assign(result, eq, line))
        self.goto(out)
        self.activate_block(int_block)
        if swap_op:
            args = [rhs, lhs]
        else:
            args = [lhs, rhs]
        call = self.call_c(c_func_desc, args, line)
        if negate_result:
            # TODO: introduce UnaryIntOp?
            call_result = self.unary_op(call, "not", line)
        else:
            call_result = call
        self.add(Assign(result, call_result, line))
        self.goto_and_activate(out)
        return result

    def compare_tagged_condition(self,
                                 lhs: Value,
                                 rhs: Value,
                                 op: str,
                                 true: BasicBlock,
                                 false: BasicBlock,
                                 line: int) -> None:
        """Compare two tagged integers using given operator (conditional context).

        Assume lhs and and rhs are tagged integers.

        Args:
            lhs: Left operand
            rhs: Right operand
            op: Operation, one of '==', '!=', '<', '<=', '>', '<='
            true: Branch target if comparison is true
            false: Branch target if comparison is false
        """
        is_eq = op in ("==", "!=")
        if ((is_short_int_rprimitive(lhs.type) and is_short_int_rprimitive(rhs.type))
            or (is_eq and (is_short_int_rprimitive(lhs.type) or
                           is_short_int_rprimitive(rhs.type)))):
            # We can skip the tag check
            check = self.comparison_op(lhs, rhs, int_comparison_op_mapping[op][0], line)
            self.add(Branch(check, true, false, Branch.BOOL))
            return
        op_type, c_func_desc, negate_result, swap_op = int_comparison_op_mapping[op]
        int_block, short_int_block = BasicBlock(), BasicBlock()
        check_lhs = self.check_tagged_short_int(lhs, line, negated=True)
        if is_eq or is_short_int_rprimitive(rhs.type):
            self.add(Branch(check_lhs, int_block, short_int_block, Branch.BOOL))
        else:
            # For non-equality logical ops (less/greater than, etc.), need to check both sides
            rhs_block = BasicBlock()
            self.add(Branch(check_lhs, int_block, rhs_block, Branch.BOOL))
            self.activate_block(rhs_block)
            check_rhs = self.check_tagged_short_int(rhs, line, negated=True)
            self.add(Branch(check_rhs, int_block, short_int_block, Branch.BOOL))
        # Arbitrary integers (slow path)
        self.activate_block(int_block)
        if swap_op:
            args = [rhs, lhs]
        else:
            args = [lhs, rhs]
        call = self.call_c(c_func_desc, args, line)
        if negate_result:
            self.add(Branch(call, false, true, Branch.BOOL))
        else:
            self.add(Branch(call, true, false, Branch.BOOL))
        # Short integers (fast path)
        self.activate_block(short_int_block)
        eq = self.comparison_op(lhs, rhs, op_type, line)
        self.add(Branch(eq, true, false, Branch.BOOL))

    def compare_strings(self, lhs: Value, rhs: Value, op: str, line: int) -> Value:
        """Compare two strings"""
        compare_result = self.call_c(unicode_compare, [lhs, rhs], line)
        error_constant = Integer(-1, c_int_rprimitive, line)
        compare_error_check = self.add(ComparisonOp(compare_result,
                                                    error_constant, ComparisonOp.EQ, line))
        exception_check, propagate, final_compare = BasicBlock(), BasicBlock(), BasicBlock()
        branch = Branch(compare_error_check, exception_check, final_compare, Branch.BOOL)
        branch.negated = False
        self.add(branch)
        self.activate_block(exception_check)
        check_error_result = self.call_c(err_occurred_op, [], line)
        null = Integer(0, pointer_rprimitive, line)
        compare_error_check = self.add(ComparisonOp(check_error_result,
                                                    null, ComparisonOp.NEQ, line))
        branch = Branch(compare_error_check, propagate, final_compare, Branch.BOOL)
        branch.negated = False
        self.add(branch)
        self.activate_block(propagate)
        self.call_c(keep_propagating_op, [], line)
        self.goto(final_compare)
        self.activate_block(final_compare)
        op_type = ComparisonOp.EQ if op == '==' else ComparisonOp.NEQ
        return self.add(ComparisonOp(compare_result,
                                     Integer(0, c_int_rprimitive), op_type, line))

    def compare_tuples(self,
                       lhs: Value,
                       rhs: Value,
                       op: str,
                       line: int = -1) -> Value:
        """Compare two tuples item by item"""
        # type cast to pass mypy check
        assert isinstance(lhs.type, RTuple) and isinstance(rhs.type, RTuple)
        equal = True if op == '==' else False
        result = Register(bool_rprimitive)
        # empty tuples
        if len(lhs.type.types) == 0 and len(rhs.type.types) == 0:
            self.add(Assign(result, self.true() if equal else self.false(), line))
            return result
        length = len(lhs.type.types)
        false_assign, true_assign, out = BasicBlock(), BasicBlock(), BasicBlock()
        check_blocks = [BasicBlock() for i in range(length)]
        lhs_items = [self.add(TupleGet(lhs, i, line)) for i in range(length)]
        rhs_items = [self.add(TupleGet(rhs, i, line)) for i in range(length)]

        if equal:
            early_stop, final = false_assign, true_assign
        else:
            early_stop, final = true_assign, false_assign

        for i in range(len(lhs.type.types)):
            if i != 0:
                self.activate_block(check_blocks[i])
            lhs_item = lhs_items[i]
            rhs_item = rhs_items[i]
            compare = self.binary_op(lhs_item, rhs_item, op, line)
            # Cast to bool if necessary since most types uses comparison returning a object type
            # See generic_ops.py for more information
            if not is_bool_rprimitive(compare.type):
                compare = self.call_c(bool_op, [compare], line)
            if i < len(lhs.type.types) - 1:
                branch = Branch(compare, early_stop, check_blocks[i + 1], Branch.BOOL)
            else:
                branch = Branch(compare, early_stop, final, Branch.BOOL)
            # if op is ==, we branch on false, else branch on true
            branch.negated = equal
            self.add(branch)
        self.activate_block(false_assign)
        self.add(Assign(result, self.false(), line))
        self.goto(out)
        self.activate_block(true_assign)
        self.add(Assign(result, self.true(), line))
        self.goto_and_activate(out)
        return result

    def bool_bitwise_op(self, lreg: Value, rreg: Value, op: str, line: int) -> Value:
        if op == '&':
            code = IntOp.AND
        elif op == '|':
            code = IntOp.OR
        elif op == '^':
            code = IntOp.XOR
        else:
            assert False, op
        return self.add(IntOp(bool_rprimitive, lreg, rreg, code, line))

    def unary_not(self,
                  value: Value,
                  line: int) -> Value:
        mask = Integer(1, value.type, line)
        return self.int_op(value.type, value, mask, IntOp.XOR, line)

    def unary_op(self,
                 lreg: Value,
                 expr_op: str,
                 line: int) -> Value:
        if (is_bool_rprimitive(lreg.type) or is_bit_rprimitive(lreg.type)) and expr_op == 'not':
            return self.unary_not(lreg, line)
        call_c_ops_candidates = unary_ops.get(expr_op, [])
        target = self.matching_call_c(call_c_ops_candidates, [lreg], line)
        assert target, 'Unsupported unary operation: %s' % expr_op
        return target

    def make_dict(self, key_value_pairs: Sequence[DictEntry], line: int) -> Value:
        result = None  # type: Union[Value, None]
        keys = []  # type: List[Value]
        values = []  # type: List[Value]
        for key, value in key_value_pairs:
            if key is not None:
                # key:value
                if result is None:
                    keys.append(key)
                    values.append(value)
                    continue

                self.translate_special_method_call(
                    result,
                    '__setitem__',
                    [key, value],
                    result_type=None,
                    line=line)
            else:
                # **value
                if result is None:
                    result = self._create_dict(keys, values, line)

                self.call_c(
                    dict_update_in_display_op,
                    [result, value],
                    line=line
                )

        if result is None:
            result = self._create_dict(keys, values, line)

        return result

    def new_list_op(self, values: List[Value], line: int) -> Value:
        length = Integer(len(values), c_pyssize_t_rprimitive, line)
        result_list = self.call_c(new_list_op, [length], line)
        if len(values) == 0:
            return result_list
        args = [self.coerce(item, object_rprimitive, line) for item in values]
        ob_item_ptr = self.add(GetElementPtr(result_list, PyListObject, 'ob_item', line))
        ob_item_base = self.add(LoadMem(pointer_rprimitive, ob_item_ptr, result_list, line))
        for i in range(len(values)):
            if i == 0:
                item_address = ob_item_base
            else:
                offset = Integer(PLATFORM_SIZE * i, c_pyssize_t_rprimitive, line)
                item_address = self.add(IntOp(pointer_rprimitive, ob_item_base, offset,
                                              IntOp.ADD, line))
            self.add(SetMem(object_rprimitive, item_address, args[i], result_list, line))
        return result_list

    def new_set_op(self, values: List[Value], line: int) -> Value:
        return self.call_c(new_set_op, values, line)

    def builtin_call(self,
                     args: List[Value],
                     fn_op: str,
                     line: int) -> Value:
        call_c_ops_candidates = function_ops.get(fn_op, [])
        target = self.matching_call_c(call_c_ops_candidates, args, line)
        assert target, 'Unsupported builtin function: %s' % fn_op
        return target

    def shortcircuit_helper(self, op: str,
                            expr_type: RType,
                            left: Callable[[], Value],
                            right: Callable[[], Value], line: int) -> Value:
        # Having actual Phi nodes would be really nice here!
        target = Register(expr_type)
        # left_body takes the value of the left side, right_body the right
        left_body, right_body, next = BasicBlock(), BasicBlock(), BasicBlock()
        # true_body is taken if the left is true, false_body if it is false.
        # For 'and' the value is the right side if the left is true, and for 'or'
        # it is the right side if the left is false.
        true_body, false_body = (
            (right_body, left_body) if op == 'and' else (left_body, right_body))

        left_value = left()
        self.add_bool_branch(left_value, true_body, false_body)

        self.activate_block(left_body)
        left_coerced = self.coerce(left_value, expr_type, line)
        self.add(Assign(target, left_coerced))
        self.goto(next)

        self.activate_block(right_body)
        right_value = right()
        right_coerced = self.coerce(right_value, expr_type, line)
        self.add(Assign(target, right_coerced))
        self.goto(next)

        self.activate_block(next)
        return target

    def add_bool_branch(self, value: Value, true: BasicBlock, false: BasicBlock) -> None:
        if is_runtime_subtype(value.type, int_rprimitive):
            zero = Integer(0, short_int_rprimitive)
            self.compare_tagged_condition(value, zero, '!=', true, false, value.line)
            return
        elif is_same_type(value.type, list_rprimitive):
            length = self.builtin_len(value, value.line)
            zero = Integer(0)
            value = self.binary_op(length, zero, '!=', value.line)
        elif (isinstance(value.type, RInstance) and value.type.class_ir.is_ext_class
                and value.type.class_ir.has_method('__bool__')):
            # Directly call the __bool__ method on classes that have it.
            value = self.gen_method_call(value, '__bool__', [], bool_rprimitive, value.line)
        else:
            value_type = optional_value_type(value.type)
            if value_type is not None:
                is_none = self.translate_is_op(value, self.none_object(), 'is not', value.line)
                branch = Branch(is_none, true, false, Branch.BOOL)
                self.add(branch)
                always_truthy = False
                if isinstance(value_type, RInstance):
                    # check whether X.__bool__ is always just the default (object.__bool__)
                    if (not value_type.class_ir.has_method('__bool__')
                            and value_type.class_ir.is_method_final('__bool__')):
                        always_truthy = True

                if not always_truthy:
                    # Optional[X] where X may be falsey and requires a check
                    branch.true = BasicBlock()
                    self.activate_block(branch.true)
                    # unbox_or_cast instead of coerce because we want the
                    # type to change even if it is a subtype.
                    remaining = self.unbox_or_cast(value, value_type, value.line)
                    self.add_bool_branch(remaining, true, false)
                return
            elif not is_bool_rprimitive(value.type) and not is_bit_rprimitive(value.type):
                value = self.call_c(bool_op, [value], value.line)
        self.add(Branch(value, true, false, Branch.BOOL))

    def call_c(self,
               desc: CFunctionDescription,
               args: List[Value],
               line: int,
               result_type: Optional[RType] = None) -> Value:
        """Call function using C/native calling convention (not a Python callable)."""
        # Handle void function via singleton RVoid instance
        coerced = []
        # Coerce fixed number arguments
        for i in range(min(len(args), len(desc.arg_types))):
            formal_type = desc.arg_types[i]
            arg = args[i]
            arg = self.coerce(arg, formal_type, line)
            coerced.append(arg)
        # Reorder args if necessary
        if desc.ordering is not None:
            assert desc.var_arg_type is None
            coerced = [coerced[i] for i in desc.ordering]
        # Coerce any var_arg
        var_arg_idx = -1
        if desc.var_arg_type is not None:
            var_arg_idx = len(desc.arg_types)
            for i in range(len(desc.arg_types), len(args)):
                arg = args[i]
                arg = self.coerce(arg, desc.var_arg_type, line)
                coerced.append(arg)
        # Add extra integer constant if any
        for item in desc.extra_int_constants:
            val, typ = item
            extra_int_constant = Integer(val, typ, line)
            coerced.append(extra_int_constant)
        error_kind = desc.error_kind
        if error_kind == ERR_NEG_INT:
            # Handled with an explicit comparison
            error_kind = ERR_NEVER
        target = self.add(CallC(desc.c_function_name, coerced, desc.return_type, desc.steals,
                                desc.is_borrowed, error_kind, line, var_arg_idx))
        if desc.error_kind == ERR_NEG_INT:
            comp = ComparisonOp(target,
                                Integer(0, desc.return_type, line),
                                ComparisonOp.SGE,
                                line)
            comp.error_kind = ERR_FALSE
            self.add(comp)

        if desc.truncated_type is None:
            result = target
        else:
            truncate = self.add(Truncate(target, desc.return_type, desc.truncated_type))
            result = truncate
        if result_type and not is_runtime_subtype(result.type, result_type):
            if is_none_rprimitive(result_type):
                # Special case None return. The actual result may actually be a bool
                # and so we can't just coerce it.
                result = self.none()
            else:
                result = self.coerce(target, result_type, line)
        return result

    def matching_call_c(self,
                        candidates: List[CFunctionDescription],
                        args: List[Value],
                        line: int,
                        result_type: Optional[RType] = None) -> Optional[Value]:
        # TODO: this function is very similar to matching_primitive_op
        # we should remove the old one or refactor both them into only as we move forward
        matching = None  # type: Optional[CFunctionDescription]
        for desc in candidates:
            if len(desc.arg_types) != len(args):
                continue
            if all(is_subtype(actual.type, formal)
                   for actual, formal in zip(args, desc.arg_types)):
                if matching:
                    assert matching.priority != desc.priority, 'Ambiguous:\n1) %s\n2) %s' % (
                        matching, desc)
                    if desc.priority > matching.priority:
                        matching = desc
                else:
                    matching = desc
        if matching:
            target = self.call_c(matching, args, line, result_type)
            return target
        return None

    def int_op(self, type: RType, lhs: Value, rhs: Value, op: int, line: int) -> Value:
        return self.add(IntOp(type, lhs, rhs, op, line))

    def comparison_op(self, lhs: Value, rhs: Value, op: int, line: int) -> Value:
        return self.add(ComparisonOp(lhs, rhs, op, line))

    def builtin_len(self, val: Value, line: int) -> Value:
        typ = val.type
        if is_list_rprimitive(typ) or is_tuple_rprimitive(typ):
            elem_address = self.add(GetElementPtr(val, PyVarObject, 'ob_size'))
            size_value = self.add(LoadMem(c_pyssize_t_rprimitive, elem_address, val))
            offset = Integer(1, c_pyssize_t_rprimitive, line)
            return self.int_op(short_int_rprimitive, size_value, offset,
                               IntOp.LEFT_SHIFT, line)
        elif is_dict_rprimitive(typ):
            size_value = self.call_c(dict_size_op, [val], line)
            offset = Integer(1, c_pyssize_t_rprimitive, line)
            return self.int_op(short_int_rprimitive, size_value, offset,
                               IntOp.LEFT_SHIFT, line)
        elif is_set_rprimitive(typ):
            elem_address = self.add(GetElementPtr(val, PySetObject, 'used'))
            size_value = self.add(LoadMem(c_pyssize_t_rprimitive, elem_address, val))
            offset = Integer(1, c_pyssize_t_rprimitive, line)
            return self.int_op(short_int_rprimitive, size_value, offset,
                               IntOp.LEFT_SHIFT, line)
        # generic case
        else:
            return self.call_c(generic_len_op, [val], line)

    def new_tuple(self, items: List[Value], line: int) -> Value:
        size = Integer(len(items), c_pyssize_t_rprimitive)  # type: Value
        return self.call_c(new_tuple_op, [size] + items, line)

    # Internal helpers

    def decompose_union_helper(self,
                               obj: Value,
                               rtype: RUnion,
                               result_type: RType,
                               process_item: Callable[[Value], Value],
                               line: int) -> Value:
        """Generate isinstance() + specialized operations for union items.

        Say, for Union[A, B] generate ops resembling this (pseudocode):

            if isinstance(obj, A):
                result = <result of process_item(cast(A, obj)>
            else:
                result = <result of process_item(cast(B, obj)>

        Args:
            obj: value with a union type
            rtype: the union type
            result_type: result of the operation
            process_item: callback to generate op for a single union item (arg is coerced
                to union item type)
            line: line number
        """
        # TODO: Optimize cases where a single operation can handle multiple union items
        #     (say a method is implemented in a common base class)
        fast_items = []
        rest_items = []
        for item in rtype.items:
            if isinstance(item, RInstance):
                fast_items.append(item)
            else:
                # For everything but RInstance we fall back to C API
                rest_items.append(item)
        exit_block = BasicBlock()
        result = Register(result_type)
        for i, item in enumerate(fast_items):
            more_types = i < len(fast_items) - 1 or rest_items
            if more_types:
                # We are not at the final item so we need one more branch
                op = self.isinstance_native(obj, item.class_ir, line)
                true_block, false_block = BasicBlock(), BasicBlock()
                self.add_bool_branch(op, true_block, false_block)
                self.activate_block(true_block)
            coerced = self.coerce(obj, item, line)
            temp = process_item(coerced)
            temp2 = self.coerce(temp, result_type, line)
            self.add(Assign(result, temp2))
            self.goto(exit_block)
            if more_types:
                self.activate_block(false_block)
        if rest_items:
            # For everything else we use generic operation. Use force=True to drop the
            # union type.
            coerced = self.coerce(obj, object_rprimitive, line, force=True)
            temp = process_item(coerced)
            temp2 = self.coerce(temp, result_type, line)
            self.add(Assign(result, temp2))
            self.goto(exit_block)
        self.activate_block(exit_block)
        return result

    def translate_special_method_call(self,
                                      base_reg: Value,
                                      name: str,
                                      args: List[Value],
                                      result_type: Optional[RType],
                                      line: int) -> Optional[Value]:
        """Translate a method call which is handled nongenerically.

        These are special in the sense that we have code generated specifically for them.
        They tend to be method calls which have equivalents in C that are more direct
        than calling with the PyObject api.

        Return None if no translation found; otherwise return the target register.
        """
        call_c_ops_candidates = method_call_ops.get(name, [])
        call_c_op = self.matching_call_c(call_c_ops_candidates, [base_reg] + args,
                                         line, result_type)
        return call_c_op

    def translate_eq_cmp(self,
                         lreg: Value,
                         rreg: Value,
                         expr_op: str,
                         line: int) -> Optional[Value]:
        """Add a equality comparison operation.

        Args:
            expr_op: either '==' or '!='
        """
        ltype = lreg.type
        rtype = rreg.type
        if not (isinstance(ltype, RInstance) and ltype == rtype):
            return None

        class_ir = ltype.class_ir
        # Check whether any subclasses of the operand redefines __eq__
        # or it might be redefined in a Python parent class or by
        # dataclasses
        cmp_varies_at_runtime = (
            not class_ir.is_method_final('__eq__')
            or not class_ir.is_method_final('__ne__')
            or class_ir.inherits_python
            or class_ir.is_augmented
        )

        if cmp_varies_at_runtime:
            # We might need to call left.__eq__(right) or right.__eq__(left)
            # depending on which is the more specific type.
            return None

        if not class_ir.has_method('__eq__'):
            # There's no __eq__ defined, so just use object identity.
            identity_ref_op = 'is' if expr_op == '==' else 'is not'
            return self.translate_is_op(lreg, rreg, identity_ref_op, line)

        return self.gen_method_call(
            lreg,
            op_methods[expr_op],
            [rreg],
            ltype,
            line
        )

    def translate_is_op(self,
                        lreg: Value,
                        rreg: Value,
                        expr_op: str,
                        line: int) -> Value:
        """Create equality comparison operation between object identities

        Args:
            expr_op: either 'is' or 'is not'
        """
        op = ComparisonOp.EQ if expr_op == 'is' else ComparisonOp.NEQ
        lhs = self.coerce(lreg, object_rprimitive, line)
        rhs = self.coerce(rreg, object_rprimitive, line)
        return self.add(ComparisonOp(lhs, rhs, op, line))

    def _create_dict(self,
                     keys: List[Value],
                     values: List[Value],
                     line: int) -> Value:
        """Create a dictionary(possibly empty) using keys and values"""
        # keys and values should have the same number of items
        size = len(keys)
        if size > 0:
            size_value = Integer(size, c_pyssize_t_rprimitive)  # type: Value
            # merge keys and values
            items = [i for t in list(zip(keys, values)) for i in t]
            return self.call_c(dict_build_op, [size_value] + items, line)
        else:
            return self.call_c(dict_new_op, [], line)