1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
|
"""A "low-level" IR builder class.
LowLevelIRBuilder provides core abstractions we use for constructing
IR as well as a number of higher-level ones (accessing attributes,
calling functions and methods, and coercing between types, for
example). The core principle of the low-level IR builder is that all
of its facilities operate solely on the IR level and not the AST
level---it has *no knowledge* of mypy types or expressions.
"""
from typing import (
Callable, List, Tuple, Optional, Union, Sequence, cast
)
from mypy.nodes import ARG_POS, ARG_NAMED, ARG_STAR, ARG_STAR2, op_methods
from mypy.types import AnyType, TypeOfAny
from mypy.checkexpr import map_actuals_to_formals
from mypyc.ir.ops import (
BasicBlock, Op, Integer, Value, Register, Assign, Branch, Goto, Call, Box, Unbox, Cast,
GetAttr, LoadStatic, MethodCall, CallC, Truncate,
RaiseStandardError, Unreachable, LoadErrorValue, LoadGlobal,
NAMESPACE_TYPE, NAMESPACE_MODULE, NAMESPACE_STATIC, IntOp, GetElementPtr,
LoadMem, ComparisonOp, LoadAddress, TupleGet, SetMem, ERR_NEVER, ERR_FALSE
)
from mypyc.ir.rtypes import (
RType, RUnion, RInstance, optional_value_type, int_rprimitive, float_rprimitive,
bool_rprimitive, list_rprimitive, str_rprimitive, is_none_rprimitive, object_rprimitive,
c_pyssize_t_rprimitive, is_short_int_rprimitive, is_tagged, PyVarObject, short_int_rprimitive,
is_list_rprimitive, is_tuple_rprimitive, is_dict_rprimitive, is_set_rprimitive, PySetObject,
none_rprimitive, RTuple, is_bool_rprimitive, is_str_rprimitive, c_int_rprimitive,
pointer_rprimitive, PyObject, PyListObject, bit_rprimitive, is_bit_rprimitive
)
from mypyc.ir.func_ir import FuncDecl, FuncSignature
from mypyc.ir.class_ir import ClassIR, all_concrete_classes
from mypyc.common import (
FAST_ISINSTANCE_MAX_SUBCLASSES, MAX_LITERAL_SHORT_INT,
STATIC_PREFIX, PLATFORM_SIZE
)
from mypyc.primitives.registry import (
method_call_ops, CFunctionDescription, function_ops,
binary_ops, unary_ops, ERR_NEG_INT
)
from mypyc.primitives.list_ops import (
list_extend_op, new_list_op
)
from mypyc.primitives.tuple_ops import list_tuple_op, new_tuple_op
from mypyc.primitives.dict_ops import (
dict_update_in_display_op, dict_new_op, dict_build_op, dict_size_op
)
from mypyc.primitives.generic_ops import (
py_getattr_op, py_call_op, py_call_with_kwargs_op, py_method_call_op, generic_len_op
)
from mypyc.primitives.misc_ops import (
none_object_op, fast_isinstance_op, bool_op
)
from mypyc.primitives.int_ops import int_comparison_op_mapping
from mypyc.primitives.exc_ops import err_occurred_op, keep_propagating_op
from mypyc.primitives.str_ops import unicode_compare
from mypyc.primitives.set_ops import new_set_op
from mypyc.rt_subtype import is_runtime_subtype
from mypyc.subtype import is_subtype
from mypyc.sametype import is_same_type
from mypyc.irbuild.mapper import Mapper
DictEntry = Tuple[Optional[Value], Value]
class LowLevelIRBuilder:
def __init__(
self,
current_module: str,
mapper: Mapper,
) -> None:
self.current_module = current_module
self.mapper = mapper
self.args = [] # type: List[Register]
self.blocks = [] # type: List[BasicBlock]
# Stack of except handler entry blocks
self.error_handlers = [None] # type: List[Optional[BasicBlock]]
# Basic operations
def add(self, op: Op) -> Value:
"""Add an op."""
assert not self.blocks[-1].terminated, "Can't add to finished block"
self.blocks[-1].ops.append(op)
return op
def goto(self, target: BasicBlock) -> None:
"""Add goto to a basic block."""
if not self.blocks[-1].terminated:
self.add(Goto(target))
def activate_block(self, block: BasicBlock) -> None:
"""Add a basic block and make it the active one (target of adds)."""
if self.blocks:
assert self.blocks[-1].terminated
block.error_handler = self.error_handlers[-1]
self.blocks.append(block)
def goto_and_activate(self, block: BasicBlock) -> None:
"""Add goto a block and make it the active block."""
self.goto(block)
self.activate_block(block)
def push_error_handler(self, handler: Optional[BasicBlock]) -> None:
self.error_handlers.append(handler)
def pop_error_handler(self) -> Optional[BasicBlock]:
return self.error_handlers.pop()
def self(self) -> Register:
"""Return reference to the 'self' argument.
This only works in a method.
"""
return self.args[0]
# Type conversions
def box(self, src: Value) -> Value:
if src.type.is_unboxed:
return self.add(Box(src))
else:
return src
def unbox_or_cast(self, src: Value, target_type: RType, line: int) -> Value:
if target_type.is_unboxed:
return self.add(Unbox(src, target_type, line))
else:
return self.add(Cast(src, target_type, line))
def coerce(self, src: Value, target_type: RType, line: int, force: bool = False) -> Value:
"""Generate a coercion/cast from one type to other (only if needed).
For example, int -> object boxes the source int; int -> int emits nothing;
object -> int unboxes the object. All conversions preserve object value.
If force is true, always generate an op (even if it is just an assignment) so
that the result will have exactly target_type as the type.
Returns the register with the converted value (may be same as src).
"""
if src.type.is_unboxed and not target_type.is_unboxed:
return self.box(src)
if ((src.type.is_unboxed and target_type.is_unboxed)
and not is_runtime_subtype(src.type, target_type)):
# To go from one unboxed type to another, we go through a boxed
# in-between value, for simplicity.
tmp = self.box(src)
return self.unbox_or_cast(tmp, target_type, line)
if ((not src.type.is_unboxed and target_type.is_unboxed)
or not is_subtype(src.type, target_type)):
return self.unbox_or_cast(src, target_type, line)
elif force:
tmp = Register(target_type)
self.add(Assign(tmp, src))
return tmp
return src
# Attribute access
def get_attr(self, obj: Value, attr: str, result_type: RType, line: int) -> Value:
"""Get a native or Python attribute of an object."""
if (isinstance(obj.type, RInstance) and obj.type.class_ir.is_ext_class
and obj.type.class_ir.has_attr(attr)):
return self.add(GetAttr(obj, attr, line))
elif isinstance(obj.type, RUnion):
return self.union_get_attr(obj, obj.type, attr, result_type, line)
else:
return self.py_get_attr(obj, attr, line)
def union_get_attr(self,
obj: Value,
rtype: RUnion,
attr: str,
result_type: RType,
line: int) -> Value:
"""Get an attribute of an object with a union type."""
def get_item_attr(value: Value) -> Value:
return self.get_attr(value, attr, result_type, line)
return self.decompose_union_helper(obj, rtype, result_type, get_item_attr, line)
def py_get_attr(self, obj: Value, attr: str, line: int) -> Value:
"""Get a Python attribute (slow).
Prefer get_attr() which generates optimized code for native classes.
"""
key = self.load_static_unicode(attr)
return self.call_c(py_getattr_op, [obj, key], line)
# isinstance() checks
def isinstance_helper(self, obj: Value, class_irs: List[ClassIR], line: int) -> Value:
"""Fast path for isinstance() that checks against a list of native classes."""
if not class_irs:
return self.false()
ret = self.isinstance_native(obj, class_irs[0], line)
for class_ir in class_irs[1:]:
def other() -> Value:
return self.isinstance_native(obj, class_ir, line)
ret = self.shortcircuit_helper('or', bool_rprimitive, lambda: ret, other, line)
return ret
def type_is_op(self, obj: Value, type_obj: Value, line: int) -> Value:
ob_type_address = self.add(GetElementPtr(obj, PyObject, 'ob_type', line))
ob_type = self.add(LoadMem(object_rprimitive, ob_type_address, obj))
return self.add(ComparisonOp(ob_type, type_obj, ComparisonOp.EQ, line))
def isinstance_native(self, obj: Value, class_ir: ClassIR, line: int) -> Value:
"""Fast isinstance() check for a native class.
If there are three or fewer concrete (non-trait) classes among the class
and all its children, use even faster type comparison checks `type(obj)
is typ`.
"""
concrete = all_concrete_classes(class_ir)
if concrete is None or len(concrete) > FAST_ISINSTANCE_MAX_SUBCLASSES + 1:
return self.call_c(fast_isinstance_op,
[obj, self.get_native_type(class_ir)],
line)
if not concrete:
# There can't be any concrete instance that matches this.
return self.false()
type_obj = self.get_native_type(concrete[0])
ret = self.type_is_op(obj, type_obj, line)
for c in concrete[1:]:
def other() -> Value:
return self.type_is_op(obj, self.get_native_type(c), line)
ret = self.shortcircuit_helper('or', bool_rprimitive, lambda: ret, other, line)
return ret
# Calls
def py_call(self,
function: Value,
arg_values: List[Value],
line: int,
arg_kinds: Optional[List[int]] = None,
arg_names: Optional[Sequence[Optional[str]]] = None) -> Value:
"""Call a Python function (non-native and slow).
Use py_call_op or py_call_with_kwargs_op for Python function call.
"""
# If all arguments are positional, we can use py_call_op.
if (arg_kinds is None) or all(kind == ARG_POS for kind in arg_kinds):
return self.call_c(py_call_op, [function] + arg_values, line)
# Otherwise fallback to py_call_with_kwargs_op.
assert arg_names is not None
pos_arg_values = []
kw_arg_key_value_pairs = [] # type: List[DictEntry]
star_arg_values = []
for value, kind, name in zip(arg_values, arg_kinds, arg_names):
if kind == ARG_POS:
pos_arg_values.append(value)
elif kind == ARG_NAMED:
assert name is not None
key = self.load_static_unicode(name)
kw_arg_key_value_pairs.append((key, value))
elif kind == ARG_STAR:
star_arg_values.append(value)
elif kind == ARG_STAR2:
# NOTE: mypy currently only supports a single ** arg, but python supports multiple.
# This code supports multiple primarily to make the logic easier to follow.
kw_arg_key_value_pairs.append((None, value))
else:
assert False, ("Argument kind should not be possible:", kind)
if len(star_arg_values) == 0:
# We can directly construct a tuple if there are no star args.
pos_args_tuple = self.new_tuple(pos_arg_values, line)
else:
# Otherwise we construct a list and call extend it with the star args, since tuples
# don't have an extend method.
pos_args_list = self.new_list_op(pos_arg_values, line)
for star_arg_value in star_arg_values:
self.call_c(list_extend_op, [pos_args_list, star_arg_value], line)
pos_args_tuple = self.call_c(list_tuple_op, [pos_args_list], line)
kw_args_dict = self.make_dict(kw_arg_key_value_pairs, line)
return self.call_c(
py_call_with_kwargs_op, [function, pos_args_tuple, kw_args_dict], line)
def py_method_call(self,
obj: Value,
method_name: str,
arg_values: List[Value],
line: int,
arg_kinds: Optional[List[int]],
arg_names: Optional[Sequence[Optional[str]]]) -> Value:
"""Call a Python method (non-native and slow)."""
if (arg_kinds is None) or all(kind == ARG_POS for kind in arg_kinds):
method_name_reg = self.load_static_unicode(method_name)
return self.call_c(py_method_call_op, [obj, method_name_reg] + arg_values, line)
else:
method = self.py_get_attr(obj, method_name, line)
return self.py_call(method, arg_values, line, arg_kinds=arg_kinds, arg_names=arg_names)
def call(self,
decl: FuncDecl,
args: Sequence[Value],
arg_kinds: List[int],
arg_names: Sequence[Optional[str]],
line: int) -> Value:
"""Call a native function."""
# Normalize args to positionals.
args = self.native_args_to_positional(
args, arg_kinds, arg_names, decl.sig, line)
return self.add(Call(decl, args, line))
def native_args_to_positional(self,
args: Sequence[Value],
arg_kinds: List[int],
arg_names: Sequence[Optional[str]],
sig: FuncSignature,
line: int) -> List[Value]:
"""Prepare arguments for a native call.
Given args/kinds/names and a target signature for a native call, map
keyword arguments to their appropriate place in the argument list,
fill in error values for unspecified default arguments,
package arguments that will go into *args/**kwargs into a tuple/dict,
and coerce arguments to the appropriate type.
"""
sig_arg_kinds = [arg.kind for arg in sig.args]
sig_arg_names = [arg.name for arg in sig.args]
formal_to_actual = map_actuals_to_formals(arg_kinds,
arg_names,
sig_arg_kinds,
sig_arg_names,
lambda n: AnyType(TypeOfAny.special_form))
# Flatten out the arguments, loading error values for default
# arguments, constructing tuples/dicts for star args, and
# coercing everything to the expected type.
output_args = []
for lst, arg in zip(formal_to_actual, sig.args):
output_arg = None
if arg.kind == ARG_STAR:
items = [args[i] for i in lst]
output_arg = self.new_tuple(items, line)
elif arg.kind == ARG_STAR2:
dict_entries = [(self.load_static_unicode(cast(str, arg_names[i])), args[i])
for i in lst]
output_arg = self.make_dict(dict_entries, line)
elif not lst:
output_arg = self.add(LoadErrorValue(arg.type, is_borrowed=True))
else:
output_arg = args[lst[0]]
output_args.append(self.coerce(output_arg, arg.type, line))
return output_args
def gen_method_call(self,
base: Value,
name: str,
arg_values: List[Value],
result_type: Optional[RType],
line: int,
arg_kinds: Optional[List[int]] = None,
arg_names: Optional[List[Optional[str]]] = None) -> Value:
"""Generate either a native or Python method call."""
# If arg_kinds contains values other than arg_pos and arg_named, then fallback to
# Python method call.
if (arg_kinds is not None
and not all(kind in (ARG_POS, ARG_NAMED) for kind in arg_kinds)):
return self.py_method_call(base, name, arg_values, base.line, arg_kinds, arg_names)
# If the base type is one of ours, do a MethodCall
if (isinstance(base.type, RInstance) and base.type.class_ir.is_ext_class
and not base.type.class_ir.builtin_base):
if base.type.class_ir.has_method(name):
decl = base.type.class_ir.method_decl(name)
if arg_kinds is None:
assert arg_names is None, "arg_kinds not present but arg_names is"
arg_kinds = [ARG_POS for _ in arg_values]
arg_names = [None for _ in arg_values]
else:
assert arg_names is not None, "arg_kinds present but arg_names is not"
# Normalize args to positionals.
assert decl.bound_sig
arg_values = self.native_args_to_positional(
arg_values, arg_kinds, arg_names, decl.bound_sig, line)
return self.add(MethodCall(base, name, arg_values, line))
elif base.type.class_ir.has_attr(name):
function = self.add(GetAttr(base, name, line))
return self.py_call(function, arg_values, line,
arg_kinds=arg_kinds, arg_names=arg_names)
elif isinstance(base.type, RUnion):
return self.union_method_call(base, base.type, name, arg_values, result_type, line,
arg_kinds, arg_names)
# Try to do a special-cased method call
if not arg_kinds or arg_kinds == [ARG_POS] * len(arg_values):
target = self.translate_special_method_call(base, name, arg_values, result_type, line)
if target:
return target
# Fall back to Python method call
return self.py_method_call(base, name, arg_values, line, arg_kinds, arg_names)
def union_method_call(self,
base: Value,
obj_type: RUnion,
name: str,
arg_values: List[Value],
return_rtype: Optional[RType],
line: int,
arg_kinds: Optional[List[int]],
arg_names: Optional[List[Optional[str]]]) -> Value:
"""Generate a method call with a union type for the object."""
# Union method call needs a return_rtype for the type of the output register.
# If we don't have one, use object_rprimitive.
return_rtype = return_rtype or object_rprimitive
def call_union_item(value: Value) -> Value:
return self.gen_method_call(value, name, arg_values, return_rtype, line,
arg_kinds, arg_names)
return self.decompose_union_helper(base, obj_type, return_rtype, call_union_item, line)
# Loading various values
def none(self) -> Value:
"""Load unboxed None value (type: none_rprimitive)."""
return Integer(1, none_rprimitive)
def true(self) -> Value:
"""Load unboxed True value (type: bool_rprimitive)."""
return Integer(1, bool_rprimitive)
def false(self) -> Value:
"""Load unboxed False value (type: bool_rprimitive)."""
return Integer(0, bool_rprimitive)
def none_object(self) -> Value:
"""Load Python None value (type: object_rprimitive)."""
return self.add(LoadAddress(none_object_op.type, none_object_op.src, line=-1))
def literal_static_name(self, value: Union[int, float, complex, str, bytes]) -> str:
return STATIC_PREFIX + self.mapper.literal_static_name(self.current_module, value)
def load_static_int(self, value: int) -> Value:
"""Loads a static integer Python 'int' object into a register."""
if abs(value) > MAX_LITERAL_SHORT_INT:
identifier = self.literal_static_name(value)
return self.add(LoadGlobal(int_rprimitive, identifier, ann=value))
else:
return Integer(value)
def load_static_float(self, value: float) -> Value:
"""Loads a static float value into a register."""
identifier = self.literal_static_name(value)
return self.add(LoadGlobal(float_rprimitive, identifier, ann=value))
def load_static_bytes(self, value: bytes) -> Value:
"""Loads a static bytes value into a register."""
identifier = self.literal_static_name(value)
return self.add(LoadGlobal(object_rprimitive, identifier, ann=value))
def load_static_complex(self, value: complex) -> Value:
"""Loads a static complex value into a register."""
identifier = self.literal_static_name(value)
return self.add(LoadGlobal(object_rprimitive, identifier, ann=value))
def load_static_unicode(self, value: str) -> Value:
"""Loads a static unicode value into a register.
This is useful for more than just unicode literals; for example, method calls
also require a PyObject * form for the name of the method.
"""
identifier = self.literal_static_name(value)
return self.add(LoadGlobal(str_rprimitive, identifier, ann=value))
def load_static_checked(self, typ: RType, identifier: str, module_name: Optional[str] = None,
namespace: str = NAMESPACE_STATIC,
line: int = -1,
error_msg: Optional[str] = None) -> Value:
if error_msg is None:
error_msg = "name '{}' is not defined".format(identifier)
ok_block, error_block = BasicBlock(), BasicBlock()
value = self.add(LoadStatic(typ, identifier, module_name, namespace, line=line))
self.add(Branch(value, error_block, ok_block, Branch.IS_ERROR, rare=True))
self.activate_block(error_block)
self.add(RaiseStandardError(RaiseStandardError.NAME_ERROR,
error_msg,
line))
self.add(Unreachable())
self.activate_block(ok_block)
return value
def load_module(self, name: str) -> Value:
return self.add(LoadStatic(object_rprimitive, name, namespace=NAMESPACE_MODULE))
def get_native_type(self, cls: ClassIR) -> Value:
"""Load native type object."""
fullname = '%s.%s' % (cls.module_name, cls.name)
return self.load_native_type_object(fullname)
def load_native_type_object(self, fullname: str) -> Value:
module, name = fullname.rsplit('.', 1)
return self.add(LoadStatic(object_rprimitive, name, module, NAMESPACE_TYPE))
# Other primitive operations
def binary_op(self,
lreg: Value,
rreg: Value,
op: str,
line: int) -> Value:
ltype = lreg.type
rtype = rreg.type
# Special case tuple comparison here so that nested tuples can be supported
if isinstance(ltype, RTuple) and isinstance(rtype, RTuple) and op in ('==', '!='):
return self.compare_tuples(lreg, rreg, op, line)
# Special case == and != when we can resolve the method call statically
if op in ('==', '!='):
value = self.translate_eq_cmp(lreg, rreg, op, line)
if value is not None:
return value
# Special case various ops
if op in ('is', 'is not'):
return self.translate_is_op(lreg, rreg, op, line)
if is_str_rprimitive(ltype) and is_str_rprimitive(rtype) and op in ('==', '!='):
return self.compare_strings(lreg, rreg, op, line)
if is_tagged(ltype) and is_tagged(rtype) and op in int_comparison_op_mapping:
return self.compare_tagged(lreg, rreg, op, line)
if is_bool_rprimitive(ltype) and is_bool_rprimitive(rtype) and op in (
'&', '&=', '|', '|=', '^', '^='):
return self.bool_bitwise_op(lreg, rreg, op[0], line)
call_c_ops_candidates = binary_ops.get(op, [])
target = self.matching_call_c(call_c_ops_candidates, [lreg, rreg], line)
assert target, 'Unsupported binary operation: %s' % op
return target
def check_tagged_short_int(self, val: Value, line: int, negated: bool = False) -> Value:
"""Check if a tagged integer is a short integer.
Return the result of the check (value of type 'bit').
"""
int_tag = Integer(1, c_pyssize_t_rprimitive, line)
bitwise_and = self.int_op(c_pyssize_t_rprimitive, val, int_tag, IntOp.AND, line)
zero = Integer(0, c_pyssize_t_rprimitive, line)
op = ComparisonOp.NEQ if negated else ComparisonOp.EQ
check = self.comparison_op(bitwise_and, zero, op, line)
return check
def compare_tagged(self, lhs: Value, rhs: Value, op: str, line: int) -> Value:
"""Compare two tagged integers using given operator (value context)."""
# generate fast binary logic ops on short ints
if is_short_int_rprimitive(lhs.type) and is_short_int_rprimitive(rhs.type):
return self.comparison_op(lhs, rhs, int_comparison_op_mapping[op][0], line)
op_type, c_func_desc, negate_result, swap_op = int_comparison_op_mapping[op]
result = Register(bool_rprimitive)
short_int_block, int_block, out = BasicBlock(), BasicBlock(), BasicBlock()
check_lhs = self.check_tagged_short_int(lhs, line)
if op in ("==", "!="):
check = check_lhs
else:
# for non-equality logical ops (less/greater than, etc.), need to check both sides
check_rhs = self.check_tagged_short_int(rhs, line)
check = self.int_op(bit_rprimitive, check_lhs, check_rhs, IntOp.AND, line)
self.add(Branch(check, short_int_block, int_block, Branch.BOOL))
self.activate_block(short_int_block)
eq = self.comparison_op(lhs, rhs, op_type, line)
self.add(Assign(result, eq, line))
self.goto(out)
self.activate_block(int_block)
if swap_op:
args = [rhs, lhs]
else:
args = [lhs, rhs]
call = self.call_c(c_func_desc, args, line)
if negate_result:
# TODO: introduce UnaryIntOp?
call_result = self.unary_op(call, "not", line)
else:
call_result = call
self.add(Assign(result, call_result, line))
self.goto_and_activate(out)
return result
def compare_tagged_condition(self,
lhs: Value,
rhs: Value,
op: str,
true: BasicBlock,
false: BasicBlock,
line: int) -> None:
"""Compare two tagged integers using given operator (conditional context).
Assume lhs and and rhs are tagged integers.
Args:
lhs: Left operand
rhs: Right operand
op: Operation, one of '==', '!=', '<', '<=', '>', '<='
true: Branch target if comparison is true
false: Branch target if comparison is false
"""
is_eq = op in ("==", "!=")
if ((is_short_int_rprimitive(lhs.type) and is_short_int_rprimitive(rhs.type))
or (is_eq and (is_short_int_rprimitive(lhs.type) or
is_short_int_rprimitive(rhs.type)))):
# We can skip the tag check
check = self.comparison_op(lhs, rhs, int_comparison_op_mapping[op][0], line)
self.add(Branch(check, true, false, Branch.BOOL))
return
op_type, c_func_desc, negate_result, swap_op = int_comparison_op_mapping[op]
int_block, short_int_block = BasicBlock(), BasicBlock()
check_lhs = self.check_tagged_short_int(lhs, line, negated=True)
if is_eq or is_short_int_rprimitive(rhs.type):
self.add(Branch(check_lhs, int_block, short_int_block, Branch.BOOL))
else:
# For non-equality logical ops (less/greater than, etc.), need to check both sides
rhs_block = BasicBlock()
self.add(Branch(check_lhs, int_block, rhs_block, Branch.BOOL))
self.activate_block(rhs_block)
check_rhs = self.check_tagged_short_int(rhs, line, negated=True)
self.add(Branch(check_rhs, int_block, short_int_block, Branch.BOOL))
# Arbitrary integers (slow path)
self.activate_block(int_block)
if swap_op:
args = [rhs, lhs]
else:
args = [lhs, rhs]
call = self.call_c(c_func_desc, args, line)
if negate_result:
self.add(Branch(call, false, true, Branch.BOOL))
else:
self.add(Branch(call, true, false, Branch.BOOL))
# Short integers (fast path)
self.activate_block(short_int_block)
eq = self.comparison_op(lhs, rhs, op_type, line)
self.add(Branch(eq, true, false, Branch.BOOL))
def compare_strings(self, lhs: Value, rhs: Value, op: str, line: int) -> Value:
"""Compare two strings"""
compare_result = self.call_c(unicode_compare, [lhs, rhs], line)
error_constant = Integer(-1, c_int_rprimitive, line)
compare_error_check = self.add(ComparisonOp(compare_result,
error_constant, ComparisonOp.EQ, line))
exception_check, propagate, final_compare = BasicBlock(), BasicBlock(), BasicBlock()
branch = Branch(compare_error_check, exception_check, final_compare, Branch.BOOL)
branch.negated = False
self.add(branch)
self.activate_block(exception_check)
check_error_result = self.call_c(err_occurred_op, [], line)
null = Integer(0, pointer_rprimitive, line)
compare_error_check = self.add(ComparisonOp(check_error_result,
null, ComparisonOp.NEQ, line))
branch = Branch(compare_error_check, propagate, final_compare, Branch.BOOL)
branch.negated = False
self.add(branch)
self.activate_block(propagate)
self.call_c(keep_propagating_op, [], line)
self.goto(final_compare)
self.activate_block(final_compare)
op_type = ComparisonOp.EQ if op == '==' else ComparisonOp.NEQ
return self.add(ComparisonOp(compare_result,
Integer(0, c_int_rprimitive), op_type, line))
def compare_tuples(self,
lhs: Value,
rhs: Value,
op: str,
line: int = -1) -> Value:
"""Compare two tuples item by item"""
# type cast to pass mypy check
assert isinstance(lhs.type, RTuple) and isinstance(rhs.type, RTuple)
equal = True if op == '==' else False
result = Register(bool_rprimitive)
# empty tuples
if len(lhs.type.types) == 0 and len(rhs.type.types) == 0:
self.add(Assign(result, self.true() if equal else self.false(), line))
return result
length = len(lhs.type.types)
false_assign, true_assign, out = BasicBlock(), BasicBlock(), BasicBlock()
check_blocks = [BasicBlock() for i in range(length)]
lhs_items = [self.add(TupleGet(lhs, i, line)) for i in range(length)]
rhs_items = [self.add(TupleGet(rhs, i, line)) for i in range(length)]
if equal:
early_stop, final = false_assign, true_assign
else:
early_stop, final = true_assign, false_assign
for i in range(len(lhs.type.types)):
if i != 0:
self.activate_block(check_blocks[i])
lhs_item = lhs_items[i]
rhs_item = rhs_items[i]
compare = self.binary_op(lhs_item, rhs_item, op, line)
# Cast to bool if necessary since most types uses comparison returning a object type
# See generic_ops.py for more information
if not is_bool_rprimitive(compare.type):
compare = self.call_c(bool_op, [compare], line)
if i < len(lhs.type.types) - 1:
branch = Branch(compare, early_stop, check_blocks[i + 1], Branch.BOOL)
else:
branch = Branch(compare, early_stop, final, Branch.BOOL)
# if op is ==, we branch on false, else branch on true
branch.negated = equal
self.add(branch)
self.activate_block(false_assign)
self.add(Assign(result, self.false(), line))
self.goto(out)
self.activate_block(true_assign)
self.add(Assign(result, self.true(), line))
self.goto_and_activate(out)
return result
def bool_bitwise_op(self, lreg: Value, rreg: Value, op: str, line: int) -> Value:
if op == '&':
code = IntOp.AND
elif op == '|':
code = IntOp.OR
elif op == '^':
code = IntOp.XOR
else:
assert False, op
return self.add(IntOp(bool_rprimitive, lreg, rreg, code, line))
def unary_not(self,
value: Value,
line: int) -> Value:
mask = Integer(1, value.type, line)
return self.int_op(value.type, value, mask, IntOp.XOR, line)
def unary_op(self,
lreg: Value,
expr_op: str,
line: int) -> Value:
if (is_bool_rprimitive(lreg.type) or is_bit_rprimitive(lreg.type)) and expr_op == 'not':
return self.unary_not(lreg, line)
call_c_ops_candidates = unary_ops.get(expr_op, [])
target = self.matching_call_c(call_c_ops_candidates, [lreg], line)
assert target, 'Unsupported unary operation: %s' % expr_op
return target
def make_dict(self, key_value_pairs: Sequence[DictEntry], line: int) -> Value:
result = None # type: Union[Value, None]
keys = [] # type: List[Value]
values = [] # type: List[Value]
for key, value in key_value_pairs:
if key is not None:
# key:value
if result is None:
keys.append(key)
values.append(value)
continue
self.translate_special_method_call(
result,
'__setitem__',
[key, value],
result_type=None,
line=line)
else:
# **value
if result is None:
result = self._create_dict(keys, values, line)
self.call_c(
dict_update_in_display_op,
[result, value],
line=line
)
if result is None:
result = self._create_dict(keys, values, line)
return result
def new_list_op(self, values: List[Value], line: int) -> Value:
length = Integer(len(values), c_pyssize_t_rprimitive, line)
result_list = self.call_c(new_list_op, [length], line)
if len(values) == 0:
return result_list
args = [self.coerce(item, object_rprimitive, line) for item in values]
ob_item_ptr = self.add(GetElementPtr(result_list, PyListObject, 'ob_item', line))
ob_item_base = self.add(LoadMem(pointer_rprimitive, ob_item_ptr, result_list, line))
for i in range(len(values)):
if i == 0:
item_address = ob_item_base
else:
offset = Integer(PLATFORM_SIZE * i, c_pyssize_t_rprimitive, line)
item_address = self.add(IntOp(pointer_rprimitive, ob_item_base, offset,
IntOp.ADD, line))
self.add(SetMem(object_rprimitive, item_address, args[i], result_list, line))
return result_list
def new_set_op(self, values: List[Value], line: int) -> Value:
return self.call_c(new_set_op, values, line)
def builtin_call(self,
args: List[Value],
fn_op: str,
line: int) -> Value:
call_c_ops_candidates = function_ops.get(fn_op, [])
target = self.matching_call_c(call_c_ops_candidates, args, line)
assert target, 'Unsupported builtin function: %s' % fn_op
return target
def shortcircuit_helper(self, op: str,
expr_type: RType,
left: Callable[[], Value],
right: Callable[[], Value], line: int) -> Value:
# Having actual Phi nodes would be really nice here!
target = Register(expr_type)
# left_body takes the value of the left side, right_body the right
left_body, right_body, next = BasicBlock(), BasicBlock(), BasicBlock()
# true_body is taken if the left is true, false_body if it is false.
# For 'and' the value is the right side if the left is true, and for 'or'
# it is the right side if the left is false.
true_body, false_body = (
(right_body, left_body) if op == 'and' else (left_body, right_body))
left_value = left()
self.add_bool_branch(left_value, true_body, false_body)
self.activate_block(left_body)
left_coerced = self.coerce(left_value, expr_type, line)
self.add(Assign(target, left_coerced))
self.goto(next)
self.activate_block(right_body)
right_value = right()
right_coerced = self.coerce(right_value, expr_type, line)
self.add(Assign(target, right_coerced))
self.goto(next)
self.activate_block(next)
return target
def add_bool_branch(self, value: Value, true: BasicBlock, false: BasicBlock) -> None:
if is_runtime_subtype(value.type, int_rprimitive):
zero = Integer(0, short_int_rprimitive)
self.compare_tagged_condition(value, zero, '!=', true, false, value.line)
return
elif is_same_type(value.type, list_rprimitive):
length = self.builtin_len(value, value.line)
zero = Integer(0)
value = self.binary_op(length, zero, '!=', value.line)
elif (isinstance(value.type, RInstance) and value.type.class_ir.is_ext_class
and value.type.class_ir.has_method('__bool__')):
# Directly call the __bool__ method on classes that have it.
value = self.gen_method_call(value, '__bool__', [], bool_rprimitive, value.line)
else:
value_type = optional_value_type(value.type)
if value_type is not None:
is_none = self.translate_is_op(value, self.none_object(), 'is not', value.line)
branch = Branch(is_none, true, false, Branch.BOOL)
self.add(branch)
always_truthy = False
if isinstance(value_type, RInstance):
# check whether X.__bool__ is always just the default (object.__bool__)
if (not value_type.class_ir.has_method('__bool__')
and value_type.class_ir.is_method_final('__bool__')):
always_truthy = True
if not always_truthy:
# Optional[X] where X may be falsey and requires a check
branch.true = BasicBlock()
self.activate_block(branch.true)
# unbox_or_cast instead of coerce because we want the
# type to change even if it is a subtype.
remaining = self.unbox_or_cast(value, value_type, value.line)
self.add_bool_branch(remaining, true, false)
return
elif not is_bool_rprimitive(value.type) and not is_bit_rprimitive(value.type):
value = self.call_c(bool_op, [value], value.line)
self.add(Branch(value, true, false, Branch.BOOL))
def call_c(self,
desc: CFunctionDescription,
args: List[Value],
line: int,
result_type: Optional[RType] = None) -> Value:
"""Call function using C/native calling convention (not a Python callable)."""
# Handle void function via singleton RVoid instance
coerced = []
# Coerce fixed number arguments
for i in range(min(len(args), len(desc.arg_types))):
formal_type = desc.arg_types[i]
arg = args[i]
arg = self.coerce(arg, formal_type, line)
coerced.append(arg)
# Reorder args if necessary
if desc.ordering is not None:
assert desc.var_arg_type is None
coerced = [coerced[i] for i in desc.ordering]
# Coerce any var_arg
var_arg_idx = -1
if desc.var_arg_type is not None:
var_arg_idx = len(desc.arg_types)
for i in range(len(desc.arg_types), len(args)):
arg = args[i]
arg = self.coerce(arg, desc.var_arg_type, line)
coerced.append(arg)
# Add extra integer constant if any
for item in desc.extra_int_constants:
val, typ = item
extra_int_constant = Integer(val, typ, line)
coerced.append(extra_int_constant)
error_kind = desc.error_kind
if error_kind == ERR_NEG_INT:
# Handled with an explicit comparison
error_kind = ERR_NEVER
target = self.add(CallC(desc.c_function_name, coerced, desc.return_type, desc.steals,
desc.is_borrowed, error_kind, line, var_arg_idx))
if desc.error_kind == ERR_NEG_INT:
comp = ComparisonOp(target,
Integer(0, desc.return_type, line),
ComparisonOp.SGE,
line)
comp.error_kind = ERR_FALSE
self.add(comp)
if desc.truncated_type is None:
result = target
else:
truncate = self.add(Truncate(target, desc.return_type, desc.truncated_type))
result = truncate
if result_type and not is_runtime_subtype(result.type, result_type):
if is_none_rprimitive(result_type):
# Special case None return. The actual result may actually be a bool
# and so we can't just coerce it.
result = self.none()
else:
result = self.coerce(target, result_type, line)
return result
def matching_call_c(self,
candidates: List[CFunctionDescription],
args: List[Value],
line: int,
result_type: Optional[RType] = None) -> Optional[Value]:
# TODO: this function is very similar to matching_primitive_op
# we should remove the old one or refactor both them into only as we move forward
matching = None # type: Optional[CFunctionDescription]
for desc in candidates:
if len(desc.arg_types) != len(args):
continue
if all(is_subtype(actual.type, formal)
for actual, formal in zip(args, desc.arg_types)):
if matching:
assert matching.priority != desc.priority, 'Ambiguous:\n1) %s\n2) %s' % (
matching, desc)
if desc.priority > matching.priority:
matching = desc
else:
matching = desc
if matching:
target = self.call_c(matching, args, line, result_type)
return target
return None
def int_op(self, type: RType, lhs: Value, rhs: Value, op: int, line: int) -> Value:
return self.add(IntOp(type, lhs, rhs, op, line))
def comparison_op(self, lhs: Value, rhs: Value, op: int, line: int) -> Value:
return self.add(ComparisonOp(lhs, rhs, op, line))
def builtin_len(self, val: Value, line: int) -> Value:
typ = val.type
if is_list_rprimitive(typ) or is_tuple_rprimitive(typ):
elem_address = self.add(GetElementPtr(val, PyVarObject, 'ob_size'))
size_value = self.add(LoadMem(c_pyssize_t_rprimitive, elem_address, val))
offset = Integer(1, c_pyssize_t_rprimitive, line)
return self.int_op(short_int_rprimitive, size_value, offset,
IntOp.LEFT_SHIFT, line)
elif is_dict_rprimitive(typ):
size_value = self.call_c(dict_size_op, [val], line)
offset = Integer(1, c_pyssize_t_rprimitive, line)
return self.int_op(short_int_rprimitive, size_value, offset,
IntOp.LEFT_SHIFT, line)
elif is_set_rprimitive(typ):
elem_address = self.add(GetElementPtr(val, PySetObject, 'used'))
size_value = self.add(LoadMem(c_pyssize_t_rprimitive, elem_address, val))
offset = Integer(1, c_pyssize_t_rprimitive, line)
return self.int_op(short_int_rprimitive, size_value, offset,
IntOp.LEFT_SHIFT, line)
# generic case
else:
return self.call_c(generic_len_op, [val], line)
def new_tuple(self, items: List[Value], line: int) -> Value:
size = Integer(len(items), c_pyssize_t_rprimitive) # type: Value
return self.call_c(new_tuple_op, [size] + items, line)
# Internal helpers
def decompose_union_helper(self,
obj: Value,
rtype: RUnion,
result_type: RType,
process_item: Callable[[Value], Value],
line: int) -> Value:
"""Generate isinstance() + specialized operations for union items.
Say, for Union[A, B] generate ops resembling this (pseudocode):
if isinstance(obj, A):
result = <result of process_item(cast(A, obj)>
else:
result = <result of process_item(cast(B, obj)>
Args:
obj: value with a union type
rtype: the union type
result_type: result of the operation
process_item: callback to generate op for a single union item (arg is coerced
to union item type)
line: line number
"""
# TODO: Optimize cases where a single operation can handle multiple union items
# (say a method is implemented in a common base class)
fast_items = []
rest_items = []
for item in rtype.items:
if isinstance(item, RInstance):
fast_items.append(item)
else:
# For everything but RInstance we fall back to C API
rest_items.append(item)
exit_block = BasicBlock()
result = Register(result_type)
for i, item in enumerate(fast_items):
more_types = i < len(fast_items) - 1 or rest_items
if more_types:
# We are not at the final item so we need one more branch
op = self.isinstance_native(obj, item.class_ir, line)
true_block, false_block = BasicBlock(), BasicBlock()
self.add_bool_branch(op, true_block, false_block)
self.activate_block(true_block)
coerced = self.coerce(obj, item, line)
temp = process_item(coerced)
temp2 = self.coerce(temp, result_type, line)
self.add(Assign(result, temp2))
self.goto(exit_block)
if more_types:
self.activate_block(false_block)
if rest_items:
# For everything else we use generic operation. Use force=True to drop the
# union type.
coerced = self.coerce(obj, object_rprimitive, line, force=True)
temp = process_item(coerced)
temp2 = self.coerce(temp, result_type, line)
self.add(Assign(result, temp2))
self.goto(exit_block)
self.activate_block(exit_block)
return result
def translate_special_method_call(self,
base_reg: Value,
name: str,
args: List[Value],
result_type: Optional[RType],
line: int) -> Optional[Value]:
"""Translate a method call which is handled nongenerically.
These are special in the sense that we have code generated specifically for them.
They tend to be method calls which have equivalents in C that are more direct
than calling with the PyObject api.
Return None if no translation found; otherwise return the target register.
"""
call_c_ops_candidates = method_call_ops.get(name, [])
call_c_op = self.matching_call_c(call_c_ops_candidates, [base_reg] + args,
line, result_type)
return call_c_op
def translate_eq_cmp(self,
lreg: Value,
rreg: Value,
expr_op: str,
line: int) -> Optional[Value]:
"""Add a equality comparison operation.
Args:
expr_op: either '==' or '!='
"""
ltype = lreg.type
rtype = rreg.type
if not (isinstance(ltype, RInstance) and ltype == rtype):
return None
class_ir = ltype.class_ir
# Check whether any subclasses of the operand redefines __eq__
# or it might be redefined in a Python parent class or by
# dataclasses
cmp_varies_at_runtime = (
not class_ir.is_method_final('__eq__')
or not class_ir.is_method_final('__ne__')
or class_ir.inherits_python
or class_ir.is_augmented
)
if cmp_varies_at_runtime:
# We might need to call left.__eq__(right) or right.__eq__(left)
# depending on which is the more specific type.
return None
if not class_ir.has_method('__eq__'):
# There's no __eq__ defined, so just use object identity.
identity_ref_op = 'is' if expr_op == '==' else 'is not'
return self.translate_is_op(lreg, rreg, identity_ref_op, line)
return self.gen_method_call(
lreg,
op_methods[expr_op],
[rreg],
ltype,
line
)
def translate_is_op(self,
lreg: Value,
rreg: Value,
expr_op: str,
line: int) -> Value:
"""Create equality comparison operation between object identities
Args:
expr_op: either 'is' or 'is not'
"""
op = ComparisonOp.EQ if expr_op == 'is' else ComparisonOp.NEQ
lhs = self.coerce(lreg, object_rprimitive, line)
rhs = self.coerce(rreg, object_rprimitive, line)
return self.add(ComparisonOp(lhs, rhs, op, line))
def _create_dict(self,
keys: List[Value],
values: List[Value],
line: int) -> Value:
"""Create a dictionary(possibly empty) using keys and values"""
# keys and values should have the same number of items
size = len(keys)
if size > 0:
size_value = Integer(size, c_pyssize_t_rprimitive) # type: Value
# merge keys and values
items = [i for t in list(zip(keys, values)) for i in t]
return self.call_c(dict_build_op, [size_value] + items, line)
else:
return self.call_c(dict_new_op, [], line)
|