File: misc_ops.c

package info (click to toggle)
mypy 0.812-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 18,596 kB
  • sloc: python: 74,869; cpp: 11,212; ansic: 3,935; makefile: 238; sh: 13
file content (511 lines) | stat: -rw-r--r-- 15,777 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
// Misc primitive operations
//
// These are registered in mypyc.primitives.misc_ops.

#include <Python.h>
#include "CPy.h"

PyObject *CPy_GetCoro(PyObject *obj)
{
    // If the type has an __await__ method, call it,
    // otherwise, fallback to calling __iter__.
    PyAsyncMethods* async_struct = obj->ob_type->tp_as_async;
    if (async_struct != NULL && async_struct->am_await != NULL) {
        return (async_struct->am_await)(obj);
    } else {
        // TODO: We should check that the type is a generator decorated with
        // asyncio.coroutine
        return PyObject_GetIter(obj);
    }
}

PyObject *CPyIter_Send(PyObject *iter, PyObject *val)
{
    // Do a send, or a next if second arg is None.
    // (This behavior is to match the PEP 380 spec for yield from.)
    _Py_IDENTIFIER(send);
    if (val == Py_None) {
        return CPyIter_Next(iter);
    } else {
        return _PyObject_CallMethodIdObjArgs(iter, &PyId_send, val, NULL);
    }
}

// A somewhat hairy implementation of specifically most of the error handling
// in `yield from` error handling. The point here is to reduce code size.
//
// This implements most of the bodies of the `except` blocks in the
// pseudocode in PEP 380.
//
// Returns true (1) if a StopIteration was received and we should return.
// Returns false (0) if a value should be yielded.
// In both cases the value is stored in outp.
// Signals an error (2) if the an exception should be propagated.
int CPy_YieldFromErrorHandle(PyObject *iter, PyObject **outp)
{
    _Py_IDENTIFIER(close);
    _Py_IDENTIFIER(throw);
    PyObject *exc_type = CPy_ExcState()->exc_type;
    PyObject *type, *value, *traceback;
    PyObject *_m;
    PyObject *res;
    *outp = NULL;

    if (PyErr_GivenExceptionMatches(exc_type, PyExc_GeneratorExit)) {
        _m = _PyObject_GetAttrId(iter, &PyId_close);
        if (_m) {
            res = PyObject_CallFunctionObjArgs(_m, NULL);
            Py_DECREF(_m);
            if (!res)
                return 2;
            Py_DECREF(res);
        } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) {
            PyErr_Clear();
        } else {
            return 2;
        }
    } else {
        _m = _PyObject_GetAttrId(iter, &PyId_throw);
        if (_m) {
            _CPy_GetExcInfo(&type, &value, &traceback);
            res = PyObject_CallFunctionObjArgs(_m, type, value, traceback, NULL);
            Py_DECREF(type);
            Py_DECREF(value);
            Py_DECREF(traceback);
            Py_DECREF(_m);
            if (res) {
                *outp = res;
                return 0;
            } else {
                res = CPy_FetchStopIterationValue();
                if (res) {
                    *outp = res;
                    return 1;
                }
            }
        } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) {
            PyErr_Clear();
        } else {
            return 2;
        }
    }

    CPy_Reraise();
    return 2;
}

PyObject *CPy_FetchStopIterationValue(void)
{
    PyObject *val = NULL;
    _PyGen_FetchStopIterationValue(&val);
    return val;
}

static bool _CPy_IsSafeMetaClass(PyTypeObject *metaclass) {
    // mypyc classes can't work with metaclasses in
    // general. Through some various nasty hacks we *do*
    // manage to work with TypingMeta and its friends.
    if (metaclass == &PyType_Type)
        return true;
    PyObject *module = PyObject_GetAttrString((PyObject *)metaclass, "__module__");
    if (!module) {
        PyErr_Clear();
        return false;
    }

    bool matches = false;
    if (PyUnicode_CompareWithASCIIString(module, "typing") == 0 &&
            (strcmp(metaclass->tp_name, "TypingMeta") == 0
             || strcmp(metaclass->tp_name, "GenericMeta") == 0
             || strcmp(metaclass->tp_name, "_ProtocolMeta") == 0)) {
        matches = true;
    } else if (PyUnicode_CompareWithASCIIString(module, "typing_extensions") == 0 &&
               strcmp(metaclass->tp_name, "_ProtocolMeta") == 0) {
        matches = true;
    } else if (PyUnicode_CompareWithASCIIString(module, "abc") == 0 &&
               strcmp(metaclass->tp_name, "ABCMeta") == 0) {
        matches = true;
    }
    Py_DECREF(module);
    return matches;
}

// Create a heap type based on a template non-heap type.
// This is super hacky and maybe we should suck it up and use PyType_FromSpec instead.
// We allow bases to be NULL to represent just inheriting from object.
// We don't support NULL bases and a non-type metaclass.
PyObject *CPyType_FromTemplate(PyObject *template,
                               PyObject *orig_bases,
                               PyObject *modname) {
    PyTypeObject *template_ = (PyTypeObject *)template;
    PyHeapTypeObject *t = NULL;
    PyTypeObject *dummy_class = NULL;
    PyObject *name = NULL;
    PyObject *bases = NULL;
    PyObject *slots;

    // If the type of the class (the metaclass) is NULL, we default it
    // to being type.  (This allows us to avoid needing to initialize
    // it explicitly on windows.)
    if (!Py_TYPE(template_)) {
        Py_TYPE(template_) = &PyType_Type;
    }
    PyTypeObject *metaclass = Py_TYPE(template_);

    if (orig_bases) {
        bases = update_bases(orig_bases);
        // update_bases doesn't increment the refcount if nothing changes,
        // so we do it to make sure we have distinct "references" to both
        if (bases == orig_bases)
            Py_INCREF(bases);

        // Find the appropriate metaclass from our base classes. We
        // care about this because Generic uses a metaclass prior to
        // Python 3.7.
        metaclass = _PyType_CalculateMetaclass(metaclass, bases);
        if (!metaclass)
            goto error;

        if (!_CPy_IsSafeMetaClass(metaclass)) {
            PyErr_SetString(PyExc_TypeError, "mypyc classes can't have a metaclass");
            goto error;
        }
    }

    name = PyUnicode_FromString(template_->tp_name);
    if (!name)
        goto error;

    // If there is a metaclass other than type, we would like to call
    // its __new__ function. Unfortunately there doesn't seem to be a
    // good way to mix a C extension class and creating it via a
    // metaclass. We need to do it anyways, though, in order to
    // support subclassing Generic[T] prior to Python 3.7.
    //
    // We solve this with a kind of atrocious hack: create a parallel
    // class using the metaclass, determine the bases of the real
    // class by pulling them out of the parallel class, creating the
    // real class, and then merging its dict back into the original
    // class. There are lots of cases where this won't really work,
    // but for the case of GenericMeta setting a bunch of properties
    // on the class we should be fine.
    if (metaclass != &PyType_Type) {
        assert(bases && "non-type metaclasses require non-NULL bases");

        PyObject *ns = PyDict_New();
        if (!ns)
            goto error;

        if (bases != orig_bases) {
            if (PyDict_SetItemString(ns, "__orig_bases__", orig_bases) < 0)
                goto error;
        }

        dummy_class = (PyTypeObject *)PyObject_CallFunctionObjArgs(
            (PyObject *)metaclass, name, bases, ns, NULL);
        Py_DECREF(ns);
        if (!dummy_class)
            goto error;

        Py_DECREF(bases);
        bases = dummy_class->tp_bases;
        Py_INCREF(bases);
    }

    // Allocate the type and then copy the main stuff in.
    t = (PyHeapTypeObject*)PyType_GenericAlloc(&PyType_Type, 0);
    if (!t)
        goto error;
    memcpy((char *)t + sizeof(PyVarObject),
           (char *)template_ + sizeof(PyVarObject),
           sizeof(PyTypeObject) - sizeof(PyVarObject));

    if (bases != orig_bases) {
        if (PyObject_SetAttrString((PyObject *)t, "__orig_bases__", orig_bases) < 0)
            goto error;
    }

    // Having tp_base set is I think required for stuff to get
    // inherited in PyType_Ready, which we needed for subclassing
    // BaseException. XXX: Taking the first element is wrong I think though.
    if (bases) {
        t->ht_type.tp_base = (PyTypeObject *)PyTuple_GET_ITEM(bases, 0);
        Py_INCREF((PyObject *)t->ht_type.tp_base);
    }

    t->ht_name = name;
    Py_INCREF(name);
    t->ht_qualname = name;
    t->ht_type.tp_bases = bases;
    // references stolen so NULL these out
    bases = name = NULL;

    if (PyType_Ready((PyTypeObject *)t) < 0)
        goto error;

    assert(t->ht_type.tp_base != NULL);

    // XXX: This is a terrible hack to work around a cpython check on
    // the mro. It was needed for mypy.stats. I need to investigate
    // what is actually going on here.
    Py_INCREF(metaclass);
    Py_TYPE(t) = metaclass;

    if (dummy_class) {
        if (PyDict_Merge(t->ht_type.tp_dict, dummy_class->tp_dict, 0) != 0)
            goto error;
        // This is the *really* tasteless bit. GenericMeta's __new__
        // in certain versions of typing sets _gorg to point back to
        // the class. We need to override it to keep it from pointing
        // to the proxy.
        if (PyDict_SetItemString(t->ht_type.tp_dict, "_gorg", (PyObject *)t) < 0)
            goto error;
    }

    // Reject anything that would give us a nontrivial __slots__,
    // because the layout will conflict
    slots = PyObject_GetAttrString((PyObject *)t, "__slots__");
    if (slots) {
        // don't fail on an empty __slots__
        int is_true = PyObject_IsTrue(slots);
        Py_DECREF(slots);
        if (is_true > 0)
            PyErr_SetString(PyExc_TypeError, "mypyc classes can't have __slots__");
        if (is_true != 0)
            goto error;
    } else {
        PyErr_Clear();
    }

    if (PyObject_SetAttrString((PyObject *)t, "__module__", modname) < 0)
        goto error;

    if (init_subclass((PyTypeObject *)t, NULL))
        goto error;

    Py_XDECREF(dummy_class);

    return (PyObject *)t;

error:
    Py_XDECREF(t);
    Py_XDECREF(bases);
    Py_XDECREF(dummy_class);
    Py_XDECREF(name);
    return NULL;
}

static int _CPy_UpdateObjFromDict(PyObject *obj, PyObject *dict)
{
    Py_ssize_t pos = 0;
    PyObject *key, *value;
    while (PyDict_Next(dict, &pos, &key, &value)) {
        if (PyObject_SetAttr(obj, key, value) != 0) {
            return -1;
        }
    }
    return 0;
}

/* Support for our partial built-in support for dataclasses.
 *
 * Take a class we want to make a dataclass, remove any descriptors
 * for annotated attributes, swap in the actual values of the class
 * variables invoke dataclass, and then restore all of the
 * descriptors.
 *
 * The purpose of all this is that dataclasses uses the values of
 * class variables to drive which attributes are required and what the
 * default values/factories are for optional attributes. This means
 * that the class dict needs to contain those values instead of getset
 * descriptors for the attributes when we invoke dataclass.
 *
 * We need to remove descriptors for attributes even when there is no
 * default value for them, or else dataclass will think the descriptor
 * is the default value. We remove only the attributes, since we don't
 * want dataclasses to try generating functions when they are already
 * implemented.
 *
 * Args:
 *   dataclass_dec: The decorator to apply
 *   tp: The class we are making a dataclass
 *   dict: The dictionary containing values that dataclasses needs
 *   annotations: The type annotation dictionary
 */
int
CPyDataclass_SleightOfHand(PyObject *dataclass_dec, PyObject *tp,
                           PyObject *dict, PyObject *annotations) {
    PyTypeObject *ttp = (PyTypeObject *)tp;
    Py_ssize_t pos;
    PyObject *res;

    /* Make a copy of the original class __dict__ */
    PyObject *orig_dict = PyDict_Copy(ttp->tp_dict);
    if (!orig_dict) {
        goto fail;
    }

    /* Delete anything that had an annotation */
    pos = 0;
    PyObject *key;
    while (PyDict_Next(annotations, &pos, &key, NULL)) {
        if (PyObject_DelAttr(tp, key) != 0) {
            goto fail;
        }
    }

    /* Copy in all the attributes that we want dataclass to see */
    if (_CPy_UpdateObjFromDict(tp, dict) != 0) {
        goto fail;
    }

    /* Run the @dataclass descriptor */
    res = PyObject_CallFunctionObjArgs(dataclass_dec, tp, NULL);
    if (!res) {
        goto fail;
    }
    Py_DECREF(res);

    /* Copy back the original contents of the dict */
    if (_CPy_UpdateObjFromDict(tp, orig_dict) != 0) {
        goto fail;
    }

    Py_DECREF(orig_dict);
    return 1;

fail:
    Py_XDECREF(orig_dict);
    return 0;
}

// Support for pickling; reusable getstate and setstate functions
PyObject *
CPyPickle_SetState(PyObject *obj, PyObject *state)
{
    if (_CPy_UpdateObjFromDict(obj, state) != 0) {
        return NULL;
    }
    Py_RETURN_NONE;
}

PyObject *
CPyPickle_GetState(PyObject *obj)
{
    PyObject *attrs = NULL, *state = NULL;

    attrs = PyObject_GetAttrString((PyObject *)Py_TYPE(obj), "__mypyc_attrs__");
    if (!attrs) {
        goto fail;
    }
    if (!PyTuple_Check(attrs)) {
        PyErr_SetString(PyExc_TypeError, "__mypyc_attrs__ is not a tuple");
        goto fail;
    }
    state = PyDict_New();
    if (!state) {
        goto fail;
    }

    // Collect all the values of attributes in __mypyc_attrs__
    // Attributes that are missing we just ignore
    int i;
    for (i = 0; i < PyTuple_GET_SIZE(attrs); i++) {
        PyObject *key = PyTuple_GET_ITEM(attrs, i);
        PyObject *value = PyObject_GetAttr(obj, key);
        if (!value) {
            if (PyErr_ExceptionMatches(PyExc_AttributeError)) {
                PyErr_Clear();
                continue;
            }
            goto fail;
        }
        int result = PyDict_SetItem(state, key, value);
        Py_DECREF(value);
        if (result != 0) {
            goto fail;
        }
    }

    Py_DECREF(attrs);

    return state;
fail:
    Py_XDECREF(attrs);
    Py_XDECREF(state);
    return NULL;
}

CPyTagged CPyTagged_Id(PyObject *o) {
    return CPyTagged_FromSsize_t((Py_ssize_t)o);
}

#define MAX_INT_CHARS 22
#define _PyUnicode_LENGTH(op)                           \
    (((PyASCIIObject *)(op))->length)

// using snprintf or PyUnicode_FromFormat was way slower than
// boxing the int and calling PyObject_Str on it, so we implement our own
static int fmt_ssize_t(char *out, Py_ssize_t n) {
	bool neg = n < 0;
	if (neg) n = -n;

	// buf gets filled backward and then we copy it forward
	char buf[MAX_INT_CHARS];
	int i = 0;
	do {
		buf[i] = (n % 10) + '0';
		n /= 10;
		i++;
	} while (n);


	int len = i;
	int j = 0;
	if (neg) {
		out[j++] = '-';
		len++;
	}

	for (; j < len; j++, i--) {
		out[j] = buf[i-1];
	}
	out[j] = '\0';

	return len;
}

static PyObject *CPyTagged_ShortToStr(Py_ssize_t n) {
    PyObject *obj = PyUnicode_New(MAX_INT_CHARS, 127);
    if (!obj) return NULL;
    int len = fmt_ssize_t((char *)PyUnicode_1BYTE_DATA(obj), n);
    _PyUnicode_LENGTH(obj) = len;
    return obj;
}

PyObject *CPyTagged_Str(CPyTagged n) {
    if (CPyTagged_CheckShort(n)) {
        return CPyTagged_ShortToStr(CPyTagged_ShortAsSsize_t(n));
    } else {
        return PyObject_Str(CPyTagged_AsObject(n));
    }
}

void CPyDebug_Print(const char *msg) {
    printf("%s\n", msg);
    fflush(stdout);
}

int CPySequence_CheckUnpackCount(PyObject *sequence, Py_ssize_t expected) {
    Py_ssize_t actual = Py_SIZE(sequence);
    if (unlikely(actual != expected)) {
        if (actual < expected) {
            PyErr_Format(PyExc_ValueError, "not enough values to unpack (expected %zd, got %zd)",
                         expected, actual);
        } else {
            PyErr_Format(PyExc_ValueError, "too many values to unpack (expected %zd)", expected);
        }
        return -1;
    }
    return 0;
}