File: protocols.rst

package info (click to toggle)
mypy 1.15.0-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 20,576 kB
  • sloc: python: 105,159; cpp: 11,380; ansic: 6,629; makefile: 247; sh: 20
file content (582 lines) | stat: -rw-r--r-- 16,711 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
.. _protocol-types:

Protocols and structural subtyping
==================================

The Python type system supports two ways of deciding whether two objects are
compatible as types: nominal subtyping and structural subtyping.

*Nominal* subtyping is strictly based on the class hierarchy. If class ``Dog``
inherits class ``Animal``, it's a subtype of ``Animal``. Instances of ``Dog``
can be used when ``Animal`` instances are expected. This form of subtyping
is what Python's type system predominantly uses: it's easy to
understand and produces clear and concise error messages, and matches how the
native :py:func:`isinstance <isinstance>` check works -- based on class
hierarchy.

*Structural* subtyping is based on the operations that can be performed with an
object. Class ``Dog`` is a structural subtype of class ``Animal`` if the former
has all attributes and methods of the latter, and with compatible types.

Structural subtyping can be seen as a static equivalent of duck typing, which is
well known to Python programmers. See :pep:`544` for the detailed specification
of protocols and structural subtyping in Python.

.. _predefined_protocols:

Predefined protocols
********************

The :py:mod:`collections.abc`, :py:mod:`typing` and other stdlib modules define
various protocol classes that correspond to common Python protocols, such as
:py:class:`Iterable[T] <collections.abc.Iterable>`. If a class
defines a suitable :py:meth:`__iter__ <object.__iter__>` method, mypy understands that it
implements the iterable protocol and is compatible with :py:class:`Iterable[T] <collections.abc.Iterable>`.
For example, ``IntList`` below is iterable, over ``int`` values:

.. code-block:: python

   from __future__ import annotations

   from collections.abc import Iterator, Iterable

   class IntList:
       def __init__(self, value: int, next: IntList | None) -> None:
           self.value = value
           self.next = next

       def __iter__(self) -> Iterator[int]:
           current = self
           while current:
               yield current.value
               current = current.next

   def print_numbered(items: Iterable[int]) -> None:
       for n, x in enumerate(items):
           print(n + 1, x)

   x = IntList(3, IntList(5, None))
   print_numbered(x)  # OK
   print_numbered([4, 5])  # Also OK

:ref:`predefined_protocols_reference` lists various protocols defined in
:py:mod:`collections.abc` and :py:mod:`typing` and the signatures of the corresponding methods
you need to define to implement each protocol.

.. note::
    ``typing`` also contains deprecated aliases to protocols and ABCs defined in
    :py:mod:`collections.abc`, such as :py:class:`Iterable[T] <typing.Iterable>`.
    These are only necessary in Python 3.8 and earlier, since the protocols in
    ``collections.abc`` didn't yet support subscripting (``[]``) in Python 3.8,
    but the aliases in ``typing`` have always supported
    subscripting. In Python 3.9 and later, the aliases in ``typing`` don't provide
    any extra functionality.

Simple user-defined protocols
*****************************

You can define your own protocol class by inheriting the special ``Protocol``
class:

.. code-block:: python

   from collections.abc import Iterable
   from typing import Protocol

   class SupportsClose(Protocol):
       # Empty method body (explicit '...')
       def close(self) -> None: ...

   class Resource:  # No SupportsClose base class!

       def close(self) -> None:
          self.resource.release()

       # ... other methods ...

   def close_all(items: Iterable[SupportsClose]) -> None:
       for item in items:
           item.close()

   close_all([Resource(), open('some/file')])  # OK

``Resource`` is a subtype of the ``SupportsClose`` protocol since it defines
a compatible ``close`` method. Regular file objects returned by :py:func:`open` are
similarly compatible with the protocol, as they support ``close()``.

Defining subprotocols and subclassing protocols
***********************************************

You can also define subprotocols. Existing protocols can be extended
and merged using multiple inheritance. Example:

.. code-block:: python

   # ... continuing from the previous example

   class SupportsRead(Protocol):
       def read(self, amount: int) -> bytes: ...

   class TaggedReadableResource(SupportsClose, SupportsRead, Protocol):
       label: str

   class AdvancedResource(Resource):
       def __init__(self, label: str) -> None:
           self.label = label

       def read(self, amount: int) -> bytes:
           # some implementation
           ...

   resource: TaggedReadableResource
   resource = AdvancedResource('handle with care')  # OK

Note that inheriting from an existing protocol does not automatically
turn the subclass into a protocol -- it just creates a regular
(non-protocol) class or ABC that implements the given protocol (or
protocols). The ``Protocol`` base class must always be explicitly
present if you are defining a protocol:

.. code-block:: python

   class NotAProtocol(SupportsClose):  # This is NOT a protocol
       new_attr: int

   class Concrete:
      new_attr: int = 0

      def close(self) -> None:
          ...

   # Error: nominal subtyping used by default
   x: NotAProtocol = Concrete()  # Error!

You can also include default implementations of methods in
protocols. If you explicitly subclass these protocols you can inherit
these default implementations.

Explicitly including a protocol as a
base class is also a way of documenting that your class implements a
particular protocol, and it forces mypy to verify that your class
implementation is actually compatible with the protocol. In particular,
omitting a value for an attribute or a method body will make it implicitly
abstract:

.. code-block:: python

   class SomeProto(Protocol):
       attr: int  # Note, no right hand side
       def method(self) -> str: ...  # Literally just ... here

   class ExplicitSubclass(SomeProto):
       pass

   ExplicitSubclass()  # error: Cannot instantiate abstract class 'ExplicitSubclass'
                       # with abstract attributes 'attr' and 'method'

Similarly, explicitly assigning to a protocol instance can be a way to ask the
type checker to verify that your class implements a protocol:

.. code-block:: python

   _proto: SomeProto = cast(ExplicitSubclass, None)

Invariance of protocol attributes
*********************************

A common issue with protocols is that protocol attributes are invariant.
For example:

.. code-block:: python

   class Box(Protocol):
         content: object

   class IntBox:
         content: int

   def takes_box(box: Box) -> None: ...

   takes_box(IntBox())  # error: Argument 1 to "takes_box" has incompatible type "IntBox"; expected "Box"
                        # note:  Following member(s) of "IntBox" have conflicts:
                        # note:      content: expected "object", got "int"

This is because ``Box`` defines ``content`` as a mutable attribute.
Here's why this is problematic:

.. code-block:: python

   def takes_box_evil(box: Box) -> None:
       box.content = "asdf"  # This is bad, since box.content is supposed to be an object

   my_int_box = IntBox()
   takes_box_evil(my_int_box)
   my_int_box.content + 1  # Oops, TypeError!

This can be fixed by declaring ``content`` to be read-only in the ``Box``
protocol using ``@property``:

.. code-block:: python

   class Box(Protocol):
       @property
       def content(self) -> object: ...

   class IntBox:
       content: int

   def takes_box(box: Box) -> None: ...

   takes_box(IntBox(42))  # OK

Recursive protocols
*******************

Protocols can be recursive (self-referential) and mutually
recursive. This is useful for declaring abstract recursive collections
such as trees and linked lists:

.. code-block:: python

   from __future__ import annotations

   from typing import Protocol

   class TreeLike(Protocol):
       value: int

       @property
       def left(self) -> TreeLike | None: ...

       @property
       def right(self) -> TreeLike | None: ...

   class SimpleTree:
       def __init__(self, value: int) -> None:
           self.value = value
           self.left: SimpleTree | None = None
           self.right: SimpleTree | None = None

   root: TreeLike = SimpleTree(0)  # OK

Using isinstance() with protocols
*********************************

You can use a protocol class with :py:func:`isinstance` if you decorate it
with the ``@runtime_checkable`` class decorator. The decorator adds
rudimentary support for runtime structural checks:

.. code-block:: python

   from typing import Protocol, runtime_checkable

   @runtime_checkable
   class Portable(Protocol):
       handles: int

   class Mug:
       def __init__(self) -> None:
           self.handles = 1

   def use(handles: int) -> None: ...

   mug = Mug()
   if isinstance(mug, Portable):  # Works at runtime!
      use(mug.handles)

:py:func:`isinstance` also works with the :ref:`predefined protocols <predefined_protocols>`
in :py:mod:`typing` such as :py:class:`~typing.Iterable`.

.. warning::
   :py:func:`isinstance` with protocols is not completely safe at runtime.
   For example, signatures of methods are not checked. The runtime
   implementation only checks that all protocol members exist,
   not that they have the correct type. :py:func:`issubclass` with protocols
   will only check for the existence of methods.

.. note::
   :py:func:`isinstance` with protocols can also be surprisingly slow.
   In many cases, you're better served by using :py:func:`hasattr` to
   check for the presence of attributes.

.. _callback_protocols:

Callback protocols
******************

Protocols can be used to define flexible callback types that are hard
(or even impossible) to express using the
:py:class:`Callable[...] <collections.abc.Callable>` syntax,
such as variadic, overloaded, and complex generic callbacks. They are defined with a
special :py:meth:`__call__ <object.__call__>` member:

.. code-block:: python

   from collections.abc import Iterable
   from typing import Optional, Protocol

   class Combiner(Protocol):
       def __call__(self, *vals: bytes, maxlen: int | None = None) -> list[bytes]: ...

   def batch_proc(data: Iterable[bytes], cb_results: Combiner) -> bytes:
       for item in data:
           ...

   def good_cb(*vals: bytes, maxlen: int | None = None) -> list[bytes]:
       ...
   def bad_cb(*vals: bytes, maxitems: int | None) -> list[bytes]:
       ...

   batch_proc([], good_cb)  # OK
   batch_proc([], bad_cb)   # Error! Argument 2 has incompatible type because of
                            # different name and kind in the callback

Callback protocols and :py:class:`~collections.abc.Callable` types can be used mostly interchangeably.
Parameter names in :py:meth:`__call__ <object.__call__>` methods must be identical, unless
the parameters are positional-only. Example (using the legacy syntax for generic functions):

.. code-block:: python

   from collections.abc import Callable
   from typing import Protocol, TypeVar

   T = TypeVar('T')

   class Copy(Protocol):
       # '/' marks the end of positional-only parameters
       def __call__(self, origin: T, /) -> T: ...

   copy_a: Callable[[T], T]
   copy_b: Copy

   copy_a = copy_b  # OK
   copy_b = copy_a  # Also OK

.. _predefined_protocols_reference:

Predefined protocol reference
*****************************

Iteration protocols
...................

The iteration protocols are useful in many contexts. For example, they allow
iteration of objects in for loops.

collections.abc.Iterable[T]
---------------------------

The :ref:`example above <predefined_protocols>` has a simple implementation of an
:py:meth:`__iter__ <object.__iter__>` method.

.. code-block:: python

   def __iter__(self) -> Iterator[T]

See also :py:class:`~collections.abc.Iterable`.

collections.abc.Iterator[T]
---------------------------

.. code-block:: python

   def __next__(self) -> T
   def __iter__(self) -> Iterator[T]

See also :py:class:`~collections.abc.Iterator`.

Collection protocols
....................

Many of these are implemented by built-in container types such as
:py:class:`list` and :py:class:`dict`, and these are also useful for user-defined
collection objects.

collections.abc.Sized
---------------------

This is a type for objects that support :py:func:`len(x) <len>`.

.. code-block:: python

   def __len__(self) -> int

See also :py:class:`~collections.abc.Sized`.

collections.abc.Container[T]
----------------------------

This is a type for objects that support the ``in`` operator.

.. code-block:: python

   def __contains__(self, x: object) -> bool

See also :py:class:`~collections.abc.Container`.

collections.abc.Collection[T]
-----------------------------

.. code-block:: python

   def __len__(self) -> int
   def __iter__(self) -> Iterator[T]
   def __contains__(self, x: object) -> bool

See also :py:class:`~collections.abc.Collection`.

One-off protocols
.................

These protocols are typically only useful with a single standard
library function or class.

collections.abc.Reversible[T]
-----------------------------

This is a type for objects that support :py:func:`reversed(x) <reversed>`.

.. code-block:: python

   def __reversed__(self) -> Iterator[T]

See also :py:class:`~collections.abc.Reversible`.

typing.SupportsAbs[T]
---------------------

This is a type for objects that support :py:func:`abs(x) <abs>`. ``T`` is the type of
value returned by :py:func:`abs(x) <abs>`.

.. code-block:: python

   def __abs__(self) -> T

See also :py:class:`~typing.SupportsAbs`.

typing.SupportsBytes
--------------------

This is a type for objects that support :py:class:`bytes(x) <bytes>`.

.. code-block:: python

   def __bytes__(self) -> bytes

See also :py:class:`~typing.SupportsBytes`.

.. _supports-int-etc:

typing.SupportsComplex
----------------------

This is a type for objects that support :py:class:`complex(x) <complex>`. Note that no arithmetic operations
are supported.

.. code-block:: python

   def __complex__(self) -> complex

See also :py:class:`~typing.SupportsComplex`.

typing.SupportsFloat
--------------------

This is a type for objects that support :py:class:`float(x) <float>`. Note that no arithmetic operations
are supported.

.. code-block:: python

   def __float__(self) -> float

See also :py:class:`~typing.SupportsFloat`.

typing.SupportsInt
------------------

This is a type for objects that support :py:class:`int(x) <int>`. Note that no arithmetic operations
are supported.

.. code-block:: python

   def __int__(self) -> int

See also :py:class:`~typing.SupportsInt`.

typing.SupportsRound[T]
-----------------------

This is a type for objects that support :py:func:`round(x) <round>`.

.. code-block:: python

   def __round__(self) -> T

See also :py:class:`~typing.SupportsRound`.

Async protocols
...............

These protocols can be useful in async code. See :ref:`async-and-await`
for more information.

collections.abc.Awaitable[T]
----------------------------

.. code-block:: python

   def __await__(self) -> Generator[Any, None, T]

See also :py:class:`~collections.abc.Awaitable`.

collections.abc.AsyncIterable[T]
--------------------------------

.. code-block:: python

   def __aiter__(self) -> AsyncIterator[T]

See also :py:class:`~collections.abc.AsyncIterable`.

collections.abc.AsyncIterator[T]
--------------------------------

.. code-block:: python

   def __anext__(self) -> Awaitable[T]
   def __aiter__(self) -> AsyncIterator[T]

See also :py:class:`~collections.abc.AsyncIterator`.

Context manager protocols
.........................

There are two protocols for context managers -- one for regular context
managers and one for async ones. These allow defining objects that can
be used in ``with`` and ``async with`` statements.

contextlib.AbstractContextManager[T]
------------------------------------

.. code-block:: python

   def __enter__(self) -> T
   def __exit__(self,
                exc_type: type[BaseException] | None,
                exc_value: BaseException | None,
                traceback: TracebackType | None) -> bool | None

See also :py:class:`~contextlib.AbstractContextManager`.

contextlib.AbstractAsyncContextManager[T]
-----------------------------------------

.. code-block:: python

   def __aenter__(self) -> Awaitable[T]
   def __aexit__(self,
                 exc_type: type[BaseException] | None,
                 exc_value: BaseException | None,
                 traceback: TracebackType | None) -> Awaitable[bool | None]

See also :py:class:`~contextlib.AbstractAsyncContextManager`.