1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
|
"""Types used in the intermediate representation.
These are runtime types (RTypes), as opposed to mypy Type objects.
The latter are only used during type checking and not directly used at
runtime. Runtime types are derived from mypy types, but there's no
simple one-to-one correspondence. (Here 'runtime' means 'runtime
checked'.)
The generated IR ensures some runtime type safety properties based on
RTypes. Compiled code can assume that the runtime value matches the
static RType of a value. If the RType of a register is 'builtins.str'
(str_rprimitive), for example, the generated IR will ensure that the
register will have a 'str' object.
RTypes are simpler and less expressive than mypy (or PEP 484)
types. For example, all mypy types of form 'list[T]' (for arbitrary T)
are erased to the single RType 'builtins.list' (list_rprimitive).
mypyc.irbuild.mapper.Mapper.type_to_rtype converts mypy Types to mypyc
RTypes.
"""
from __future__ import annotations
from abc import abstractmethod
from typing import TYPE_CHECKING, ClassVar, Final, Generic, TypeVar
from typing_extensions import TypeGuard
from mypyc.common import IS_32_BIT_PLATFORM, PLATFORM_SIZE, JsonDict, short_name
from mypyc.namegen import NameGenerator
if TYPE_CHECKING:
from mypyc.ir.class_ir import ClassIR
from mypyc.ir.ops import DeserMaps
T = TypeVar("T")
class RType:
"""Abstract base class for runtime types (erased, only concrete; no generics)."""
name: str
# If True, the type has a special unboxed representation. If False, the
# type is represented as PyObject *. Even if True, the representation
# may contain pointers.
is_unboxed = False
# This is the C undefined value for this type. It's used for initialization
# if there's no value yet, and for function return value on error/exception.
#
# TODO: This shouldn't be specific to C or a string
c_undefined: str
# If unboxed: does the unboxed version use reference counting?
is_refcounted = True
# C type; use Emitter.ctype() to access
_ctype: str
# If True, error/undefined value overlaps with a valid value. To
# detect an exception, PyErr_Occurred() must be used in addition
# to checking for error value as the return value of a function.
#
# For example, no i64 value can be reserved for error value, so we
# pick an arbitrary value (e.g. -113) to signal error, but this is
# also a valid non-error value.
error_overlap = False
@abstractmethod
def accept(self, visitor: RTypeVisitor[T]) -> T:
raise NotImplementedError()
def short_name(self) -> str:
return short_name(self.name)
def __str__(self) -> str:
return short_name(self.name)
def __repr__(self) -> str:
return "<%s>" % self.__class__.__name__
def serialize(self) -> JsonDict | str:
raise NotImplementedError(f"Cannot serialize {self.__class__.__name__} instance")
def deserialize_type(data: JsonDict | str, ctx: DeserMaps) -> RType:
"""Deserialize a JSON-serialized RType.
Arguments:
data: The decoded JSON of the serialized type
ctx: The deserialization maps to use
"""
# Since there are so few types, we just case on them directly. If
# more get added we should switch to a system like mypy.types
# uses.
if isinstance(data, str):
if data in ctx.classes:
return RInstance(ctx.classes[data])
elif data in RPrimitive.primitive_map:
return RPrimitive.primitive_map[data]
elif data == "void":
return RVoid()
else:
assert False, f"Can't find class {data}"
elif data[".class"] == "RTuple":
return RTuple.deserialize(data, ctx)
elif data[".class"] == "RUnion":
return RUnion.deserialize(data, ctx)
raise NotImplementedError("unexpected .class {}".format(data[".class"]))
class RTypeVisitor(Generic[T]):
"""Generic visitor over RTypes (uses the visitor design pattern)."""
@abstractmethod
def visit_rprimitive(self, typ: RPrimitive, /) -> T:
raise NotImplementedError
@abstractmethod
def visit_rinstance(self, typ: RInstance, /) -> T:
raise NotImplementedError
@abstractmethod
def visit_runion(self, typ: RUnion, /) -> T:
raise NotImplementedError
@abstractmethod
def visit_rtuple(self, typ: RTuple, /) -> T:
raise NotImplementedError
@abstractmethod
def visit_rstruct(self, typ: RStruct, /) -> T:
raise NotImplementedError
@abstractmethod
def visit_rarray(self, typ: RArray, /) -> T:
raise NotImplementedError
@abstractmethod
def visit_rvoid(self, typ: RVoid, /) -> T:
raise NotImplementedError
class RVoid(RType):
"""The void type (no value).
This is a singleton -- use void_rtype (below) to refer to this instead of
constructing a new instance.
"""
is_unboxed = False
name = "void"
ctype = "void"
def accept(self, visitor: RTypeVisitor[T]) -> T:
return visitor.visit_rvoid(self)
def serialize(self) -> str:
return "void"
def __eq__(self, other: object) -> bool:
return isinstance(other, RVoid)
def __hash__(self) -> int:
return hash(RVoid)
# Singleton instance of RVoid
void_rtype: Final = RVoid()
class RPrimitive(RType):
"""Primitive type such as 'object' or 'int'.
These often have custom ops associated with them. The 'object'
primitive type can be used to hold arbitrary Python objects.
Different primitive types have different representations, and
primitives may be unboxed or boxed. Primitive types don't need to
directly correspond to Python types, but most do.
NOTE: All supported primitive types are defined below
(e.g. object_rprimitive).
"""
# Map from primitive names to primitive types and is used by deserialization
primitive_map: ClassVar[dict[str, RPrimitive]] = {}
def __init__(
self,
name: str,
*,
is_unboxed: bool,
is_refcounted: bool,
is_native_int: bool = False,
is_signed: bool = False,
ctype: str = "PyObject *",
size: int = PLATFORM_SIZE,
error_overlap: bool = False,
) -> None:
RPrimitive.primitive_map[name] = self
self.name = name
self.is_unboxed = is_unboxed
self.is_refcounted = is_refcounted
self.is_native_int = is_native_int
self.is_signed = is_signed
self._ctype = ctype
self.size = size
self.error_overlap = error_overlap
if ctype == "CPyTagged":
self.c_undefined = "CPY_INT_TAG"
elif ctype in ("int16_t", "int32_t", "int64_t"):
# This is basically an arbitrary value that is pretty
# unlikely to overlap with a real value.
self.c_undefined = "-113"
elif ctype == "CPyPtr":
# TODO: Invent an overlapping error value?
self.c_undefined = "0"
elif ctype == "PyObject *":
# Boxed types use the null pointer as the error value.
self.c_undefined = "NULL"
elif ctype == "char":
self.c_undefined = "2"
elif ctype in ("PyObject **", "void *"):
self.c_undefined = "NULL"
elif ctype == "double":
self.c_undefined = "-113.0"
elif ctype in ("uint8_t", "uint16_t", "uint32_t", "uint64_t"):
self.c_undefined = "239" # An arbitrary number
else:
assert False, "Unrecognized ctype: %r" % ctype
def accept(self, visitor: RTypeVisitor[T]) -> T:
return visitor.visit_rprimitive(self)
def serialize(self) -> str:
return self.name
def __repr__(self) -> str:
return "<RPrimitive %s>" % self.name
def __eq__(self, other: object) -> bool:
return isinstance(other, RPrimitive) and other.name == self.name
def __hash__(self) -> int:
return hash(self.name)
# NOTE: All the supported instances of RPrimitive are defined
# below. Use these instead of creating new instances.
# Used to represent arbitrary objects and dynamically typed (Any)
# values. There are various ops that let you perform generic, runtime
# checked operations on these (that match Python semantics). See the
# ops in mypyc.primitives.misc_ops, including py_getattr_op,
# py_call_op, and many others.
#
# If there is no more specific RType available for some value, we fall
# back to using this type.
#
# NOTE: Even though this is very flexible, this type should be used as
# little as possible, as generic ops are typically slow. Other types,
# including other primitive types and RInstance, are usually much
# faster.
object_rprimitive: Final = RPrimitive("builtins.object", is_unboxed=False, is_refcounted=True)
# represents a low level pointer of an object
object_pointer_rprimitive: Final = RPrimitive(
"object_ptr", is_unboxed=False, is_refcounted=False, ctype="PyObject **"
)
# Arbitrary-precision integer (corresponds to Python 'int'). Small
# enough values are stored unboxed, while large integers are
# represented as a tagged pointer to a Python 'int' PyObject. The
# lowest bit is used as the tag to decide whether it is a signed
# unboxed value (shifted left by one) or a PyObject * pointing to an
# 'int' object. Pointers have the least significant bit set.
#
# The undefined/error value is the null pointer (1 -- only the least
# significant bit is set)).
#
# This cannot represent a subclass of int. An instance of a subclass
# of int is coerced to the corresponding 'int' value.
int_rprimitive: Final = RPrimitive(
"builtins.int", is_unboxed=True, is_refcounted=True, ctype="CPyTagged"
)
# An unboxed integer. The representation is the same as for unboxed
# int_rprimitive (shifted left by one). These can be used when an
# integer is known to be small enough to fit size_t (CPyTagged).
short_int_rprimitive: Final = RPrimitive(
"short_int", is_unboxed=True, is_refcounted=False, ctype="CPyTagged"
)
# Low level integer types (correspond to C integer types)
int16_rprimitive: Final = RPrimitive(
"i16",
is_unboxed=True,
is_refcounted=False,
is_native_int=True,
is_signed=True,
ctype="int16_t",
size=2,
error_overlap=True,
)
int32_rprimitive: Final = RPrimitive(
"i32",
is_unboxed=True,
is_refcounted=False,
is_native_int=True,
is_signed=True,
ctype="int32_t",
size=4,
error_overlap=True,
)
int64_rprimitive: Final = RPrimitive(
"i64",
is_unboxed=True,
is_refcounted=False,
is_native_int=True,
is_signed=True,
ctype="int64_t",
size=8,
error_overlap=True,
)
uint8_rprimitive: Final = RPrimitive(
"u8",
is_unboxed=True,
is_refcounted=False,
is_native_int=True,
is_signed=False,
ctype="uint8_t",
size=1,
error_overlap=True,
)
# The following unsigned native int types (u16, u32, u64) are not
# exposed to the user. They are for internal use within mypyc only.
u16_rprimitive: Final = RPrimitive(
"u16",
is_unboxed=True,
is_refcounted=False,
is_native_int=True,
is_signed=False,
ctype="uint16_t",
size=2,
error_overlap=True,
)
uint32_rprimitive: Final = RPrimitive(
"u32",
is_unboxed=True,
is_refcounted=False,
is_native_int=True,
is_signed=False,
ctype="uint32_t",
size=4,
error_overlap=True,
)
uint64_rprimitive: Final = RPrimitive(
"u64",
is_unboxed=True,
is_refcounted=False,
is_native_int=True,
is_signed=False,
ctype="uint64_t",
size=8,
error_overlap=True,
)
# The C 'int' type
c_int_rprimitive = int32_rprimitive
if IS_32_BIT_PLATFORM:
c_size_t_rprimitive = uint32_rprimitive
c_pyssize_t_rprimitive = RPrimitive(
"native_int",
is_unboxed=True,
is_refcounted=False,
is_native_int=True,
is_signed=True,
ctype="int32_t",
size=4,
)
else:
c_size_t_rprimitive = uint64_rprimitive
c_pyssize_t_rprimitive = RPrimitive(
"native_int",
is_unboxed=True,
is_refcounted=False,
is_native_int=True,
is_signed=True,
ctype="int64_t",
size=8,
)
# Untyped pointer, represented as integer in the C backend
pointer_rprimitive: Final = RPrimitive("ptr", is_unboxed=True, is_refcounted=False, ctype="CPyPtr")
# Untyped pointer, represented as void * in the C backend
c_pointer_rprimitive: Final = RPrimitive(
"c_ptr", is_unboxed=False, is_refcounted=False, ctype="void *"
)
# The type corresponding to mypyc.common.BITMAP_TYPE
bitmap_rprimitive: Final = uint32_rprimitive
# Floats are represent as 'float' PyObject * values. (In the future
# we'll likely switch to a more efficient, unboxed representation.)
float_rprimitive: Final = RPrimitive(
"builtins.float",
is_unboxed=True,
is_refcounted=False,
ctype="double",
size=8,
error_overlap=True,
)
# An unboxed Python bool value. This actually has three possible values
# (0 -> False, 1 -> True, 2 -> error). If you only need True/False, use
# bit_rprimitive instead.
bool_rprimitive: Final = RPrimitive(
"builtins.bool", is_unboxed=True, is_refcounted=False, ctype="char", size=1
)
# A low-level boolean value with two possible values: 0 and 1. Any
# other value results in undefined behavior. Undefined or error values
# are not supported.
bit_rprimitive: Final = RPrimitive(
"bit", is_unboxed=True, is_refcounted=False, ctype="char", size=1
)
# The 'None' value. The possible values are 0 -> None and 2 -> error.
none_rprimitive: Final = RPrimitive(
"builtins.None", is_unboxed=True, is_refcounted=False, ctype="char", size=1
)
# Python list object (or an instance of a subclass of list).
list_rprimitive: Final = RPrimitive("builtins.list", is_unboxed=False, is_refcounted=True)
# Python dict object (or an instance of a subclass of dict).
dict_rprimitive: Final = RPrimitive("builtins.dict", is_unboxed=False, is_refcounted=True)
# Python set object (or an instance of a subclass of set).
set_rprimitive: Final = RPrimitive("builtins.set", is_unboxed=False, is_refcounted=True)
# Python str object. At the C layer, str is referred to as unicode
# (PyUnicode).
str_rprimitive: Final = RPrimitive("builtins.str", is_unboxed=False, is_refcounted=True)
# Python bytes object.
bytes_rprimitive: Final = RPrimitive("builtins.bytes", is_unboxed=False, is_refcounted=True)
# Tuple of an arbitrary length (corresponds to Tuple[t, ...], with
# explicit '...').
tuple_rprimitive: Final = RPrimitive("builtins.tuple", is_unboxed=False, is_refcounted=True)
# Python range object.
range_rprimitive: Final = RPrimitive("builtins.range", is_unboxed=False, is_refcounted=True)
def is_tagged(rtype: RType) -> bool:
return rtype is int_rprimitive or rtype is short_int_rprimitive
def is_int_rprimitive(rtype: RType) -> bool:
return rtype is int_rprimitive
def is_short_int_rprimitive(rtype: RType) -> bool:
return rtype is short_int_rprimitive
def is_int16_rprimitive(rtype: RType) -> TypeGuard[RPrimitive]:
return rtype is int16_rprimitive
def is_int32_rprimitive(rtype: RType) -> TypeGuard[RPrimitive]:
return rtype is int32_rprimitive or (
rtype is c_pyssize_t_rprimitive and rtype._ctype == "int32_t"
)
def is_int64_rprimitive(rtype: RType) -> bool:
return rtype is int64_rprimitive or (
rtype is c_pyssize_t_rprimitive and rtype._ctype == "int64_t"
)
def is_fixed_width_rtype(rtype: RType) -> TypeGuard[RPrimitive]:
return (
is_int64_rprimitive(rtype)
or is_int32_rprimitive(rtype)
or is_int16_rprimitive(rtype)
or is_uint8_rprimitive(rtype)
)
def is_uint8_rprimitive(rtype: RType) -> TypeGuard[RPrimitive]:
return rtype is uint8_rprimitive
def is_uint32_rprimitive(rtype: RType) -> bool:
return rtype is uint32_rprimitive
def is_uint64_rprimitive(rtype: RType) -> bool:
return rtype is uint64_rprimitive
def is_c_py_ssize_t_rprimitive(rtype: RType) -> bool:
return rtype is c_pyssize_t_rprimitive
def is_pointer_rprimitive(rtype: RType) -> bool:
return rtype is pointer_rprimitive
def is_float_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and rtype.name == "builtins.float"
def is_bool_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and rtype.name == "builtins.bool"
def is_bit_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and rtype.name == "bit"
def is_object_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and rtype.name == "builtins.object"
def is_none_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and rtype.name == "builtins.None"
def is_list_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and rtype.name == "builtins.list"
def is_dict_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and rtype.name == "builtins.dict"
def is_set_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and rtype.name == "builtins.set"
def is_str_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and rtype.name == "builtins.str"
def is_bytes_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and rtype.name == "builtins.bytes"
def is_tuple_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and rtype.name == "builtins.tuple"
def is_range_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and rtype.name == "builtins.range"
def is_sequence_rprimitive(rtype: RType) -> bool:
return isinstance(rtype, RPrimitive) and (
is_list_rprimitive(rtype) or is_tuple_rprimitive(rtype) or is_str_rprimitive(rtype)
)
class TupleNameVisitor(RTypeVisitor[str]):
"""Produce a tuple name based on the concrete representations of types."""
def visit_rinstance(self, t: RInstance) -> str:
return "O"
def visit_runion(self, t: RUnion) -> str:
return "O"
def visit_rprimitive(self, t: RPrimitive) -> str:
if t._ctype == "CPyTagged":
return "I"
elif t._ctype == "char":
return "C"
elif t._ctype == "int64_t":
return "8" # "8 byte integer"
elif t._ctype == "int32_t":
return "4" # "4 byte integer"
elif t._ctype == "int16_t":
return "2" # "2 byte integer"
elif t._ctype == "uint8_t":
return "U1" # "1 byte unsigned integer"
elif t._ctype == "double":
return "F"
assert not t.is_unboxed, f"{t} unexpected unboxed type"
return "O"
def visit_rtuple(self, t: RTuple) -> str:
parts = [elem.accept(self) for elem in t.types]
return "T{}{}".format(len(parts), "".join(parts))
def visit_rstruct(self, t: RStruct) -> str:
assert False, "RStruct not supported in tuple"
def visit_rarray(self, t: RArray) -> str:
assert False, "RArray not supported in tuple"
def visit_rvoid(self, t: RVoid) -> str:
assert False, "rvoid in tuple?"
class RTuple(RType):
"""Fixed-length unboxed tuple (represented as a C struct).
These are used to represent mypy TupleType values (fixed-length
Python tuples). Since this is unboxed, the identity of a tuple
object is not preserved within compiled code. If the identity of a
tuple is important, or there is a need to have multiple references
to a single tuple object, a variable-length tuple should be used
(tuple_rprimitive or Tuple[T, ...] with explicit '...'), as they
are boxed.
These aren't immutable. However, user code won't be able to mutate
individual tuple items.
"""
is_unboxed = True
def __init__(self, types: list[RType]) -> None:
self.name = "tuple"
self.types = tuple(types)
self.is_refcounted = any(t.is_refcounted for t in self.types)
# Generate a unique id which is used in naming corresponding C identifiers.
# This is necessary since C does not have anonymous structural type equivalence
# in the same way python can just assign a Tuple[int, bool] to a Tuple[int, bool].
self.unique_id = self.accept(TupleNameVisitor())
# Nominally the max c length is 31 chars, but I'm not honestly worried about this.
self.struct_name = f"tuple_{self.unique_id}"
self._ctype = f"{self.struct_name}"
self.error_overlap = all(t.error_overlap for t in self.types) and bool(self.types)
def accept(self, visitor: RTypeVisitor[T]) -> T:
return visitor.visit_rtuple(self)
def __str__(self) -> str:
return "tuple[%s]" % ", ".join(str(typ) for typ in self.types)
def __repr__(self) -> str:
return "<RTuple %s>" % ", ".join(repr(typ) for typ in self.types)
def __eq__(self, other: object) -> bool:
return isinstance(other, RTuple) and self.types == other.types
def __hash__(self) -> int:
return hash((self.name, self.types))
def serialize(self) -> JsonDict:
types = [x.serialize() for x in self.types]
return {".class": "RTuple", "types": types}
@classmethod
def deserialize(cls, data: JsonDict, ctx: DeserMaps) -> RTuple:
types = [deserialize_type(t, ctx) for t in data["types"]]
return RTuple(types)
# Exception tuple: (exception class, exception instance, traceback object)
exc_rtuple = RTuple([object_rprimitive, object_rprimitive, object_rprimitive])
# Dictionary iterator tuple: (should continue, internal offset, key, value)
# See mypyc.irbuild.for_helpers.ForDictionaryCommon for more details.
dict_next_rtuple_pair = RTuple(
[bool_rprimitive, short_int_rprimitive, object_rprimitive, object_rprimitive]
)
# Same as above but just for key or value.
dict_next_rtuple_single = RTuple([bool_rprimitive, short_int_rprimitive, object_rprimitive])
def compute_rtype_alignment(typ: RType) -> int:
"""Compute alignment of a given type based on platform alignment rule"""
platform_alignment = PLATFORM_SIZE
if isinstance(typ, RPrimitive):
return typ.size
elif isinstance(typ, RInstance):
return platform_alignment
elif isinstance(typ, RUnion):
return platform_alignment
elif isinstance(typ, RArray):
return compute_rtype_alignment(typ.item_type)
else:
if isinstance(typ, RTuple):
items = list(typ.types)
elif isinstance(typ, RStruct):
items = typ.types
else:
assert False, "invalid rtype for computing alignment"
max_alignment = max(compute_rtype_alignment(item) for item in items)
return max_alignment
def compute_rtype_size(typ: RType) -> int:
"""Compute unaligned size of rtype"""
if isinstance(typ, RPrimitive):
return typ.size
elif isinstance(typ, RTuple):
return compute_aligned_offsets_and_size(list(typ.types))[1]
elif isinstance(typ, RUnion):
return PLATFORM_SIZE
elif isinstance(typ, RStruct):
return compute_aligned_offsets_and_size(typ.types)[1]
elif isinstance(typ, RInstance):
return PLATFORM_SIZE
elif isinstance(typ, RArray):
alignment = compute_rtype_alignment(typ)
aligned_size = (compute_rtype_size(typ.item_type) + (alignment - 1)) & ~(alignment - 1)
return aligned_size * typ.length
else:
assert False, "invalid rtype for computing size"
def compute_aligned_offsets_and_size(types: list[RType]) -> tuple[list[int], int]:
"""Compute offsets and total size of a list of types after alignment
Note that the types argument are types of values that are stored
sequentially with platform default alignment.
"""
unaligned_sizes = [compute_rtype_size(typ) for typ in types]
alignments = [compute_rtype_alignment(typ) for typ in types]
current_offset = 0
offsets = []
final_size = 0
for i in range(len(unaligned_sizes)):
offsets.append(current_offset)
if i + 1 < len(unaligned_sizes):
cur_size = unaligned_sizes[i]
current_offset += cur_size
next_alignment = alignments[i + 1]
# compute aligned offset,
# check https://en.wikipedia.org/wiki/Data_structure_alignment for more information
current_offset = (current_offset + (next_alignment - 1)) & -next_alignment
else:
struct_alignment = max(alignments)
final_size = current_offset + unaligned_sizes[i]
final_size = (final_size + (struct_alignment - 1)) & -struct_alignment
return offsets, final_size
class RStruct(RType):
"""C struct type"""
def __init__(self, name: str, names: list[str], types: list[RType]) -> None:
self.name = name
self.names = names
self.types = types
# generate dummy names
if len(self.names) < len(self.types):
for i in range(len(self.types) - len(self.names)):
self.names.append("_item" + str(i))
self.offsets, self.size = compute_aligned_offsets_and_size(types)
self._ctype = name
def accept(self, visitor: RTypeVisitor[T]) -> T:
return visitor.visit_rstruct(self)
def __str__(self) -> str:
# if not tuple(unnamed structs)
return "{}{{{}}}".format(
self.name,
", ".join(name + ":" + str(typ) for name, typ in zip(self.names, self.types)),
)
def __repr__(self) -> str:
return "<RStruct {}{{{}}}>".format(
self.name,
", ".join(name + ":" + repr(typ) for name, typ in zip(self.names, self.types)),
)
def __eq__(self, other: object) -> bool:
return (
isinstance(other, RStruct)
and self.name == other.name
and self.names == other.names
and self.types == other.types
)
def __hash__(self) -> int:
return hash((self.name, tuple(self.names), tuple(self.types)))
def serialize(self) -> JsonDict:
assert False
@classmethod
def deserialize(cls, data: JsonDict, ctx: DeserMaps) -> RStruct:
assert False
class RInstance(RType):
"""Instance of user-defined class (compiled to C extension class).
The runtime representation is 'PyObject *', and these are always
boxed and thus reference-counted.
These support fast method calls and fast attribute access using
vtables, and they usually use a dict-free, struct-based
representation of attributes. Method calls and attribute access
can skip the vtable if we know that there is no overriding.
These are also sometimes called 'native' types, since these have
the most efficient representation and ops (along with certain
RPrimitive types and RTuple).
"""
is_unboxed = False
def __init__(self, class_ir: ClassIR) -> None:
# name is used for formatting the name in messages and debug output
# so we want the fullname for precision.
self.name = class_ir.fullname
self.class_ir = class_ir
self._ctype = "PyObject *"
def accept(self, visitor: RTypeVisitor[T]) -> T:
return visitor.visit_rinstance(self)
def struct_name(self, names: NameGenerator) -> str:
return self.class_ir.struct_name(names)
def getter_index(self, name: str) -> int:
return self.class_ir.vtable_entry(name)
def setter_index(self, name: str) -> int:
return self.getter_index(name) + 1
def method_index(self, name: str) -> int:
return self.class_ir.vtable_entry(name)
def attr_type(self, name: str) -> RType:
return self.class_ir.attr_type(name)
def __repr__(self) -> str:
return "<RInstance %s>" % self.name
def __eq__(self, other: object) -> bool:
return isinstance(other, RInstance) and other.name == self.name
def __hash__(self) -> int:
return hash(self.name)
def serialize(self) -> str:
return self.name
class RUnion(RType):
"""union[x, ..., y]"""
is_unboxed = False
def __init__(self, items: list[RType]) -> None:
self.name = "union"
self.items = items
self.items_set = frozenset(items)
self._ctype = "PyObject *"
@staticmethod
def make_simplified_union(items: list[RType]) -> RType:
"""Return a normalized union that covers the given items.
Flatten nested unions and remove duplicate items.
Overlapping items are *not* simplified. For example,
[object, str] will not be simplified.
"""
items = flatten_nested_unions(items)
assert items
unique_items = dict.fromkeys(items)
if len(unique_items) > 1:
return RUnion(list(unique_items))
else:
return next(iter(unique_items))
def accept(self, visitor: RTypeVisitor[T]) -> T:
return visitor.visit_runion(self)
def __repr__(self) -> str:
return "<RUnion %s>" % ", ".join(str(item) for item in self.items)
def __str__(self) -> str:
return "union[%s]" % ", ".join(str(item) for item in self.items)
# We compare based on the set because order in a union doesn't matter
def __eq__(self, other: object) -> bool:
return isinstance(other, RUnion) and self.items_set == other.items_set
def __hash__(self) -> int:
return hash(("union", self.items_set))
def serialize(self) -> JsonDict:
types = [x.serialize() for x in self.items]
return {".class": "RUnion", "types": types}
@classmethod
def deserialize(cls, data: JsonDict, ctx: DeserMaps) -> RUnion:
types = [deserialize_type(t, ctx) for t in data["types"]]
return RUnion(types)
def flatten_nested_unions(types: list[RType]) -> list[RType]:
if not any(isinstance(t, RUnion) for t in types):
return types # Fast path
flat_items: list[RType] = []
for t in types:
if isinstance(t, RUnion):
flat_items.extend(flatten_nested_unions(t.items))
else:
flat_items.append(t)
return flat_items
def optional_value_type(rtype: RType) -> RType | None:
"""If rtype is the union of none_rprimitive and another type X, return X.
Otherwise return None.
"""
if isinstance(rtype, RUnion) and len(rtype.items) == 2:
if rtype.items[0] == none_rprimitive:
return rtype.items[1]
elif rtype.items[1] == none_rprimitive:
return rtype.items[0]
return None
def is_optional_type(rtype: RType) -> bool:
"""Is rtype an optional type with exactly two union items?"""
return optional_value_type(rtype) is not None
class RArray(RType):
"""Fixed-length C array type (for example, int[5]).
Note that the implementation is a bit limited, and these can basically
be only used for local variables that are initialized in one location.
"""
def __init__(self, item_type: RType, length: int) -> None:
self.item_type = item_type
# Number of items
self.length = length
self.is_refcounted = False
def accept(self, visitor: RTypeVisitor[T]) -> T:
return visitor.visit_rarray(self)
def __str__(self) -> str:
return f"{self.item_type}[{self.length}]"
def __repr__(self) -> str:
return f"<RArray {self.item_type!r}[{self.length}]>"
def __eq__(self, other: object) -> bool:
return (
isinstance(other, RArray)
and self.item_type == other.item_type
and self.length == other.length
)
def __hash__(self) -> int:
return hash((self.item_type, self.length))
def serialize(self) -> JsonDict:
assert False
@classmethod
def deserialize(cls, data: JsonDict, ctx: DeserMaps) -> RArray:
assert False
PyObject = RStruct(
name="PyObject",
names=["ob_refcnt", "ob_type"],
types=[c_pyssize_t_rprimitive, pointer_rprimitive],
)
PyVarObject = RStruct(
name="PyVarObject", names=["ob_base", "ob_size"], types=[PyObject, c_pyssize_t_rprimitive]
)
setentry = RStruct(
name="setentry", names=["key", "hash"], types=[pointer_rprimitive, c_pyssize_t_rprimitive]
)
smalltable = RStruct(name="smalltable", names=[], types=[setentry] * 8)
PySetObject = RStruct(
name="PySetObject",
names=[
"ob_base",
"fill",
"used",
"mask",
"table",
"hash",
"finger",
"smalltable",
"weakreflist",
],
types=[
PyObject,
c_pyssize_t_rprimitive,
c_pyssize_t_rprimitive,
c_pyssize_t_rprimitive,
pointer_rprimitive,
c_pyssize_t_rprimitive,
c_pyssize_t_rprimitive,
smalltable,
pointer_rprimitive,
],
)
PyListObject = RStruct(
name="PyListObject",
names=["ob_base", "ob_item", "allocated"],
types=[PyVarObject, pointer_rprimitive, c_pyssize_t_rprimitive],
)
def check_native_int_range(rtype: RPrimitive, n: int) -> bool:
"""Is n within the range of a native, fixed-width int type?
Assume the type is a fixed-width int type.
"""
if not rtype.is_signed:
return 0 <= n < (1 << (8 * rtype.size))
else:
limit = 1 << (rtype.size * 8 - 1)
return -limit <= n < limit
|