1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
|
"""A "low-level" IR builder class.
See the docstring of class LowLevelIRBuilder for more information.
"""
from __future__ import annotations
from collections.abc import Sequence
from typing import Callable, Final, Optional
from mypy.argmap import map_actuals_to_formals
from mypy.nodes import ARG_POS, ARG_STAR, ARG_STAR2, ArgKind
from mypy.operators import op_methods, unary_op_methods
from mypy.types import AnyType, TypeOfAny
from mypyc.common import (
BITMAP_BITS,
FAST_ISINSTANCE_MAX_SUBCLASSES,
MAX_LITERAL_SHORT_INT,
MAX_SHORT_INT,
MIN_LITERAL_SHORT_INT,
MIN_SHORT_INT,
PLATFORM_SIZE,
use_method_vectorcall,
use_vectorcall,
)
from mypyc.errors import Errors
from mypyc.ir.class_ir import ClassIR, all_concrete_classes
from mypyc.ir.func_ir import FuncDecl, FuncSignature
from mypyc.ir.ops import (
ERR_FALSE,
ERR_NEVER,
NAMESPACE_MODULE,
NAMESPACE_STATIC,
NAMESPACE_TYPE,
Assign,
AssignMulti,
BasicBlock,
Box,
Branch,
Call,
CallC,
Cast,
ComparisonOp,
Extend,
Float,
FloatComparisonOp,
FloatNeg,
FloatOp,
GetAttr,
GetElementPtr,
Goto,
Integer,
IntOp,
KeepAlive,
LoadAddress,
LoadErrorValue,
LoadLiteral,
LoadMem,
LoadStatic,
MethodCall,
Op,
PrimitiveDescription,
PrimitiveOp,
RaiseStandardError,
Register,
Truncate,
TupleGet,
TupleSet,
Unbox,
Unreachable,
Value,
float_comparison_op_to_id,
float_op_to_id,
int_op_to_id,
)
from mypyc.ir.rtypes import (
PyObject,
PySetObject,
RArray,
RInstance,
RPrimitive,
RTuple,
RType,
RUnion,
bit_rprimitive,
bitmap_rprimitive,
bool_rprimitive,
bytes_rprimitive,
c_int_rprimitive,
c_pointer_rprimitive,
c_pyssize_t_rprimitive,
c_size_t_rprimitive,
check_native_int_range,
dict_rprimitive,
float_rprimitive,
int_rprimitive,
is_bit_rprimitive,
is_bool_rprimitive,
is_bytes_rprimitive,
is_dict_rprimitive,
is_fixed_width_rtype,
is_float_rprimitive,
is_int16_rprimitive,
is_int32_rprimitive,
is_int64_rprimitive,
is_int_rprimitive,
is_list_rprimitive,
is_none_rprimitive,
is_set_rprimitive,
is_short_int_rprimitive,
is_str_rprimitive,
is_tagged,
is_tuple_rprimitive,
is_uint8_rprimitive,
list_rprimitive,
none_rprimitive,
object_pointer_rprimitive,
object_rprimitive,
optional_value_type,
pointer_rprimitive,
short_int_rprimitive,
str_rprimitive,
)
from mypyc.irbuild.util import concrete_arg_kind
from mypyc.options import CompilerOptions
from mypyc.primitives.bytes_ops import bytes_compare
from mypyc.primitives.dict_ops import (
dict_build_op,
dict_new_op,
dict_ssize_t_size_op,
dict_update_in_display_op,
)
from mypyc.primitives.exc_ops import err_occurred_op, keep_propagating_op
from mypyc.primitives.float_ops import copysign_op, int_to_float_op
from mypyc.primitives.generic_ops import (
generic_len_op,
generic_ssize_t_len_op,
py_call_op,
py_call_with_kwargs_op,
py_getattr_op,
py_method_call_op,
py_vectorcall_method_op,
py_vectorcall_op,
)
from mypyc.primitives.int_ops import (
int16_divide_op,
int16_mod_op,
int16_overflow,
int32_divide_op,
int32_mod_op,
int32_overflow,
int64_divide_op,
int64_mod_op,
int64_to_int_op,
int_to_int32_op,
int_to_int64_op,
ssize_t_to_int_op,
uint8_overflow,
)
from mypyc.primitives.list_ops import list_build_op, list_extend_op, list_items, new_list_op
from mypyc.primitives.misc_ops import (
bool_op,
buf_init_item,
fast_isinstance_op,
none_object_op,
not_implemented_op,
var_object_size,
)
from mypyc.primitives.registry import (
ERR_NEG_INT,
CFunctionDescription,
binary_ops,
method_call_ops,
unary_ops,
)
from mypyc.primitives.set_ops import new_set_op
from mypyc.primitives.str_ops import str_check_if_true, str_ssize_t_size_op, unicode_compare
from mypyc.primitives.tuple_ops import list_tuple_op, new_tuple_op, new_tuple_with_length_op
from mypyc.rt_subtype import is_runtime_subtype
from mypyc.sametype import is_same_type
from mypyc.subtype import is_subtype
DictEntry = tuple[Optional[Value], Value]
# If the number of items is less than the threshold when initializing
# a list, we would inline the generate IR using SetMem and expanded
# for-loop. Otherwise, we would call `list_build_op` for larger lists.
# TODO: The threshold is a randomly chosen number which needs further
# study on real-world projects for a better balance.
LIST_BUILDING_EXPANSION_THRESHOLD = 10
# From CPython
PY_VECTORCALL_ARGUMENTS_OFFSET: Final = 1 << (PLATFORM_SIZE * 8 - 1)
FIXED_WIDTH_INT_BINARY_OPS: Final = {
"+",
"-",
"*",
"//",
"%",
"&",
"|",
"^",
"<<",
">>",
"+=",
"-=",
"*=",
"//=",
"%=",
"&=",
"|=",
"^=",
"<<=",
">>=",
}
# Binary operations on bools that are specialized and don't just promote operands to int
BOOL_BINARY_OPS: Final = {"&", "&=", "|", "|=", "^", "^=", "==", "!=", "<", "<=", ">", ">="}
class LowLevelIRBuilder:
"""A "low-level" IR builder class.
LowLevelIRBuilder provides core abstractions we use for constructing
IR as well as a number of higher-level ones (accessing attributes,
calling functions and methods, and coercing between types, for
example).
The core principle of the low-level IR builder is that all of its
facilities operate solely on the mypyc IR level and not the mypy AST
level---it has *no knowledge* of mypy types or expressions.
The mypyc.irbuilder.builder.IRBuilder class wraps an instance of this
class and provides additional functionality to transform mypy AST nodes
to IR.
"""
def __init__(self, errors: Errors | None, options: CompilerOptions) -> None:
self.errors = errors
self.options = options
self.args: list[Register] = []
self.blocks: list[BasicBlock] = []
# Stack of except handler entry blocks
self.error_handlers: list[BasicBlock | None] = [None]
# Values that we need to keep alive as long as we have borrowed
# temporaries. Use flush_keep_alives() to mark the end of the live range.
self.keep_alives: list[Value] = []
def set_module(self, module_name: str, module_path: str) -> None:
"""Set the name and path of the current module."""
self.module_name = module_name
self.module_path = module_path
# Basic operations
def add(self, op: Op) -> Value:
"""Add an op."""
assert not self.blocks[-1].terminated, "Can't add to finished block"
self.blocks[-1].ops.append(op)
return op
def goto(self, target: BasicBlock) -> None:
"""Add goto to a basic block."""
if not self.blocks[-1].terminated:
self.add(Goto(target))
def activate_block(self, block: BasicBlock) -> None:
"""Add a basic block and make it the active one (target of adds)."""
if self.blocks:
assert self.blocks[-1].terminated
block.error_handler = self.error_handlers[-1]
self.blocks.append(block)
def goto_and_activate(self, block: BasicBlock) -> None:
"""Add goto a block and make it the active block."""
self.goto(block)
self.activate_block(block)
def keep_alive(self, values: list[Value], *, steal: bool = False) -> None:
self.add(KeepAlive(values, steal=steal))
def push_error_handler(self, handler: BasicBlock | None) -> None:
self.error_handlers.append(handler)
def pop_error_handler(self) -> BasicBlock | None:
return self.error_handlers.pop()
def self(self) -> Register:
"""Return reference to the 'self' argument.
This only works in a method.
"""
return self.args[0]
def flush_keep_alives(self) -> None:
if self.keep_alives:
self.add(KeepAlive(self.keep_alives.copy()))
self.keep_alives = []
# Type conversions
def box(self, src: Value) -> Value:
if src.type.is_unboxed:
if isinstance(src, Integer) and is_tagged(src.type):
return self.add(LoadLiteral(src.value >> 1, rtype=object_rprimitive))
return self.add(Box(src))
else:
return src
def unbox_or_cast(
self, src: Value, target_type: RType, line: int, *, can_borrow: bool = False
) -> Value:
if target_type.is_unboxed:
return self.add(Unbox(src, target_type, line))
else:
if can_borrow:
self.keep_alives.append(src)
return self.add(Cast(src, target_type, line, borrow=can_borrow))
def coerce(
self,
src: Value,
target_type: RType,
line: int,
force: bool = False,
*,
can_borrow: bool = False,
) -> Value:
"""Generate a coercion/cast from one type to other (only if needed).
For example, int -> object boxes the source int; int -> int emits nothing;
object -> int unboxes the object. All conversions preserve object value.
If force is true, always generate an op (even if it is just an assignment) so
that the result will have exactly target_type as the type.
Returns the register with the converted value (may be same as src).
"""
src_type = src.type
if src_type.is_unboxed and not target_type.is_unboxed:
# Unboxed -> boxed
return self.box(src)
if (src_type.is_unboxed and target_type.is_unboxed) and not is_runtime_subtype(
src_type, target_type
):
if (
isinstance(src, Integer)
and is_short_int_rprimitive(src_type)
and is_fixed_width_rtype(target_type)
):
value = src.numeric_value()
if not check_native_int_range(target_type, value):
self.error(f'Value {value} is out of range for "{target_type}"', line)
return Integer(src.value >> 1, target_type)
elif is_int_rprimitive(src_type) and is_fixed_width_rtype(target_type):
return self.coerce_int_to_fixed_width(src, target_type, line)
elif is_fixed_width_rtype(src_type) and is_int_rprimitive(target_type):
return self.coerce_fixed_width_to_int(src, line)
elif is_short_int_rprimitive(src_type) and is_fixed_width_rtype(target_type):
return self.coerce_short_int_to_fixed_width(src, target_type, line)
elif (
isinstance(src_type, RPrimitive)
and isinstance(target_type, RPrimitive)
and src_type.is_native_int
and target_type.is_native_int
and src_type.size == target_type.size
and src_type.is_signed == target_type.is_signed
):
# Equivalent types
return src
elif (is_bool_rprimitive(src_type) or is_bit_rprimitive(src_type)) and is_tagged(
target_type
):
shifted = self.int_op(
bool_rprimitive, src, Integer(1, bool_rprimitive), IntOp.LEFT_SHIFT
)
return self.add(Extend(shifted, target_type, signed=False))
elif (
is_bool_rprimitive(src_type) or is_bit_rprimitive(src_type)
) and is_fixed_width_rtype(target_type):
return self.add(Extend(src, target_type, signed=False))
elif isinstance(src, Integer) and is_float_rprimitive(target_type):
if is_tagged(src_type):
return Float(float(src.value // 2))
return Float(float(src.value))
elif is_tagged(src_type) and is_float_rprimitive(target_type):
return self.int_to_float(src, line)
elif (
isinstance(src_type, RTuple)
and isinstance(target_type, RTuple)
and len(src_type.types) == len(target_type.types)
):
# Coerce between two tuple types by coercing each item separately
values = []
for i in range(len(src_type.types)):
v = None
if isinstance(src, TupleSet):
item = src.items[i]
# We can't reuse register values, since they can be modified.
if not isinstance(item, Register):
v = item
if v is None:
v = TupleGet(src, i)
self.add(v)
values.append(v)
return self.add(
TupleSet(
[self.coerce(v, t, line) for v, t in zip(values, target_type.types)], line
)
)
# To go between any other unboxed types, we go through a boxed
# in-between value, for simplicity.
tmp = self.box(src)
return self.unbox_or_cast(tmp, target_type, line)
if (not src_type.is_unboxed and target_type.is_unboxed) or not is_subtype(
src_type, target_type
):
return self.unbox_or_cast(src, target_type, line, can_borrow=can_borrow)
elif force:
tmp = Register(target_type)
self.add(Assign(tmp, src))
return tmp
return src
def coerce_int_to_fixed_width(self, src: Value, target_type: RType, line: int) -> Value:
assert is_fixed_width_rtype(target_type), target_type
assert isinstance(target_type, RPrimitive)
res = Register(target_type)
fast, slow, end = BasicBlock(), BasicBlock(), BasicBlock()
check = self.check_tagged_short_int(src, line)
self.add(Branch(check, fast, slow, Branch.BOOL))
self.activate_block(fast)
size = target_type.size
if size < int_rprimitive.size:
# Add a range check when the target type is smaller than the source type
fast2, fast3 = BasicBlock(), BasicBlock()
upper_bound = 1 << (size * 8 - 1)
if not target_type.is_signed:
upper_bound *= 2
check2 = self.add(ComparisonOp(src, Integer(upper_bound, src.type), ComparisonOp.SLT))
self.add(Branch(check2, fast2, slow, Branch.BOOL))
self.activate_block(fast2)
if target_type.is_signed:
lower_bound = -upper_bound
else:
lower_bound = 0
check3 = self.add(ComparisonOp(src, Integer(lower_bound, src.type), ComparisonOp.SGE))
self.add(Branch(check3, fast3, slow, Branch.BOOL))
self.activate_block(fast3)
tmp = self.int_op(
c_pyssize_t_rprimitive,
src,
Integer(1, c_pyssize_t_rprimitive),
IntOp.RIGHT_SHIFT,
line,
)
tmp = self.add(Truncate(tmp, target_type))
else:
if size > int_rprimitive.size:
tmp = self.add(Extend(src, target_type, signed=True))
else:
tmp = src
tmp = self.int_op(target_type, tmp, Integer(1, target_type), IntOp.RIGHT_SHIFT, line)
self.add(Assign(res, tmp))
self.goto(end)
self.activate_block(slow)
if is_int64_rprimitive(target_type) or (
is_int32_rprimitive(target_type) and size == int_rprimitive.size
):
# Slow path calls a library function that handles more complex logic
ptr = self.int_op(
pointer_rprimitive, src, Integer(1, pointer_rprimitive), IntOp.XOR, line
)
ptr2 = Register(c_pointer_rprimitive)
self.add(Assign(ptr2, ptr))
if is_int64_rprimitive(target_type):
conv_op = int_to_int64_op
else:
conv_op = int_to_int32_op
tmp = self.call_c(conv_op, [ptr2], line)
self.add(Assign(res, tmp))
self.add(KeepAlive([src]))
self.goto(end)
elif is_int32_rprimitive(target_type):
# Slow path just always generates an OverflowError
self.call_c(int32_overflow, [], line)
self.add(Unreachable())
elif is_int16_rprimitive(target_type):
# Slow path just always generates an OverflowError
self.call_c(int16_overflow, [], line)
self.add(Unreachable())
elif is_uint8_rprimitive(target_type):
# Slow path just always generates an OverflowError
self.call_c(uint8_overflow, [], line)
self.add(Unreachable())
else:
assert False, target_type
self.activate_block(end)
return res
def coerce_short_int_to_fixed_width(self, src: Value, target_type: RType, line: int) -> Value:
if is_int64_rprimitive(target_type) or (
PLATFORM_SIZE == 4 and is_int32_rprimitive(target_type)
):
return self.int_op(target_type, src, Integer(1, target_type), IntOp.RIGHT_SHIFT, line)
# TODO: i32 on 64-bit platform
assert False, (src.type, target_type, PLATFORM_SIZE)
def coerce_fixed_width_to_int(self, src: Value, line: int) -> Value:
if (
(is_int32_rprimitive(src.type) and PLATFORM_SIZE == 8)
or is_int16_rprimitive(src.type)
or is_uint8_rprimitive(src.type)
):
# Simple case -- just sign extend and shift.
extended = self.add(Extend(src, c_pyssize_t_rprimitive, signed=src.type.is_signed))
return self.int_op(
int_rprimitive,
extended,
Integer(1, c_pyssize_t_rprimitive),
IntOp.LEFT_SHIFT,
line,
)
assert is_fixed_width_rtype(src.type)
assert isinstance(src.type, RPrimitive)
src_type = src.type
res = Register(int_rprimitive)
fast, fast2, slow, end = BasicBlock(), BasicBlock(), BasicBlock(), BasicBlock()
c1 = self.add(ComparisonOp(src, Integer(MAX_SHORT_INT, src_type), ComparisonOp.SLE))
self.add(Branch(c1, fast, slow, Branch.BOOL))
self.activate_block(fast)
c2 = self.add(ComparisonOp(src, Integer(MIN_SHORT_INT, src_type), ComparisonOp.SGE))
self.add(Branch(c2, fast2, slow, Branch.BOOL))
self.activate_block(slow)
if is_int64_rprimitive(src_type):
conv_op = int64_to_int_op
elif is_int32_rprimitive(src_type):
assert PLATFORM_SIZE == 4
conv_op = ssize_t_to_int_op
else:
assert False, src_type
x = self.call_c(conv_op, [src], line)
self.add(Assign(res, x))
self.goto(end)
self.activate_block(fast2)
if int_rprimitive.size < src_type.size:
tmp = self.add(Truncate(src, c_pyssize_t_rprimitive))
else:
tmp = src
s = self.int_op(int_rprimitive, tmp, Integer(1, tmp.type), IntOp.LEFT_SHIFT, line)
self.add(Assign(res, s))
self.goto(end)
self.activate_block(end)
return res
def coerce_nullable(self, src: Value, target_type: RType, line: int) -> Value:
"""Generate a coercion from a potentially null value."""
if src.type.is_unboxed == target_type.is_unboxed and (
(target_type.is_unboxed and is_runtime_subtype(src.type, target_type))
or (not target_type.is_unboxed and is_subtype(src.type, target_type))
):
return src
target = Register(target_type)
valid, invalid, out = BasicBlock(), BasicBlock(), BasicBlock()
self.add(Branch(src, invalid, valid, Branch.IS_ERROR))
self.activate_block(valid)
coerced = self.coerce(src, target_type, line)
self.add(Assign(target, coerced, line))
self.goto(out)
self.activate_block(invalid)
error = self.add(LoadErrorValue(target_type))
self.add(Assign(target, error, line))
self.goto_and_activate(out)
return target
# Attribute access
def get_attr(
self, obj: Value, attr: str, result_type: RType, line: int, *, borrow: bool = False
) -> Value:
"""Get a native or Python attribute of an object."""
if (
isinstance(obj.type, RInstance)
and obj.type.class_ir.is_ext_class
and obj.type.class_ir.has_attr(attr)
):
op = GetAttr(obj, attr, line, borrow=borrow)
# For non-refcounted attribute types, the borrow might be
# disabled even if requested, so don't check 'borrow'.
if op.is_borrowed:
self.keep_alives.append(obj)
return self.add(op)
elif isinstance(obj.type, RUnion):
return self.union_get_attr(obj, obj.type, attr, result_type, line)
else:
return self.py_get_attr(obj, attr, line)
def union_get_attr(
self, obj: Value, rtype: RUnion, attr: str, result_type: RType, line: int
) -> Value:
"""Get an attribute of an object with a union type."""
def get_item_attr(value: Value) -> Value:
return self.get_attr(value, attr, result_type, line)
return self.decompose_union_helper(obj, rtype, result_type, get_item_attr, line)
def py_get_attr(self, obj: Value, attr: str, line: int) -> Value:
"""Get a Python attribute (slow).
Prefer get_attr() which generates optimized code for native classes.
"""
key = self.load_str(attr)
return self.primitive_op(py_getattr_op, [obj, key], line)
# isinstance() checks
def isinstance_helper(self, obj: Value, class_irs: list[ClassIR], line: int) -> Value:
"""Fast path for isinstance() that checks against a list of native classes."""
if not class_irs:
return self.false()
ret = self.isinstance_native(obj, class_irs[0], line)
for class_ir in class_irs[1:]:
def other() -> Value:
return self.isinstance_native(obj, class_ir, line)
ret = self.shortcircuit_helper("or", bool_rprimitive, lambda: ret, other, line)
return ret
def get_type_of_obj(self, obj: Value, line: int) -> Value:
ob_type_address = self.add(GetElementPtr(obj, PyObject, "ob_type", line))
ob_type = self.add(LoadMem(object_rprimitive, ob_type_address))
self.add(KeepAlive([obj]))
return ob_type
def type_is_op(self, obj: Value, type_obj: Value, line: int) -> Value:
typ = self.get_type_of_obj(obj, line)
return self.add(ComparisonOp(typ, type_obj, ComparisonOp.EQ, line))
def isinstance_native(self, obj: Value, class_ir: ClassIR, line: int) -> Value:
"""Fast isinstance() check for a native class.
If there are three or fewer concrete (non-trait) classes among the class
and all its children, use even faster type comparison checks `type(obj)
is typ`.
"""
concrete = all_concrete_classes(class_ir)
if concrete is None or len(concrete) > FAST_ISINSTANCE_MAX_SUBCLASSES + 1:
return self.primitive_op(
fast_isinstance_op, [obj, self.get_native_type(class_ir)], line
)
if not concrete:
# There can't be any concrete instance that matches this.
return self.false()
type_obj = self.get_native_type(concrete[0])
ret = self.type_is_op(obj, type_obj, line)
for c in concrete[1:]:
def other() -> Value:
return self.type_is_op(obj, self.get_native_type(c), line)
ret = self.shortcircuit_helper("or", bool_rprimitive, lambda: ret, other, line)
return ret
# Calls
def _construct_varargs(
self,
args: Sequence[tuple[Value, ArgKind, str | None]],
line: int,
*,
has_star: bool,
has_star2: bool,
) -> tuple[Value | None, Value | None]:
"""Construct *args and **kwargs from a collection of arguments
This is pretty complicated, and almost all of the complication here stems from
one of two things (but mostly the second):
* The handling of ARG_STAR/ARG_STAR2. We want to create as much of the args/kwargs
values in one go as we can, so we collect values until our hand is forced, and
then we emit creation of the list/tuple, and expand it from there if needed.
* Support potentially nullable argument values. This has very narrow applicability,
as this will never be done by our compiled Python code, but is critically used
by gen_glue_method when generating glue methods to mediate between the function
signature of a parent class and its subclasses.
For named-only arguments, this is quite simple: if it is
null, don't put it in the dict.
For positional-or-named arguments, things are much more complicated.
* First, anything that was passed as a positional arg
must be forwarded along as a positional arg. It *must
not* be converted to a named arg. This is because mypy
does not enforce that positional-or-named arguments
have the same name in subclasses, and it is not
uncommon for code to have different names in
subclasses (a bunch of mypy's visitors do this, for
example!). This is arguably a bug in both mypy and code doing
this, and they ought to be using positional-only arguments, but
positional-only arguments are new and ugly.
* On the flip side, we're willing to accept the
infelicity of sometimes turning an argument that was
passed by keyword into a positional argument. It's wrong,
but it's very marginal, and avoiding it would require passing
a bitmask of which arguments were named with every function call,
or something similar.
(See some discussion of this in testComplicatedArgs)
Thus, our strategy for positional-or-named arguments is to
always pass them as positional, except in the one
situation where we can not, and where we can be absolutely
sure they were passed by name: when an *earlier*
positional argument was missing its value.
This means that if we have a method `f(self, x: int=..., y: object=...)`:
* x and y present: args=(x, y), kwargs={}
* x present, y missing: args=(x,), kwargs={}
* x missing, y present: args=(), kwargs={'y': y}
To implement this, when we have multiple optional
positional arguments, we maintain a flag in a register
that tracks whether an argument has been missing, and for
each such optional argument (except the first), we check
the flag to determine whether to append the argument to
the *args list or add it to the **kwargs dict. What a
mess!
This is what really makes everything here such a tangle;
otherwise the *args and **kwargs code could be separated.
The arguments has_star and has_star2 indicate whether the target function
takes an ARG_STAR and ARG_STAR2 argument, respectively.
(These will always be true when making a pycall, and be based
on the actual target signature for a native call.)
"""
star_result: Value | None = None
star2_result: Value | None = None
# We aggregate values that need to go into *args and **kwargs
# in these lists. Once all arguments are processed (in the
# happiest case), or we encounter an ARG_STAR/ARG_STAR2 or a
# nullable arg, then we create the list and/or dict.
star_values: list[Value] = []
star2_keys: list[Value] = []
star2_values: list[Value] = []
seen_empty_reg: Register | None = None
for value, kind, name in args:
if kind == ARG_STAR:
if star_result is None:
star_result = self.new_list_op(star_values, line)
self.primitive_op(list_extend_op, [star_result, value], line)
elif kind == ARG_STAR2:
if star2_result is None:
star2_result = self._create_dict(star2_keys, star2_values, line)
self.call_c(dict_update_in_display_op, [star2_result, value], line=line)
else:
nullable = kind.is_optional()
maybe_pos = kind.is_positional() and has_star
maybe_named = kind.is_named() or (kind.is_optional() and name and has_star2)
# If the argument is nullable, we need to create the
# relevant args/kwargs objects so that we can
# conditionally modify them.
if nullable:
if maybe_pos and star_result is None:
star_result = self.new_list_op(star_values, line)
if maybe_named and star2_result is None:
star2_result = self._create_dict(star2_keys, star2_values, line)
# Easy cases: just collect the argument.
if maybe_pos and star_result is None:
star_values.append(value)
continue
if maybe_named and star2_result is None:
assert name is not None
key = self.load_str(name)
star2_keys.append(key)
star2_values.append(value)
continue
# OK, anything that is nullable or *after* a nullable arg needs to be here
# TODO: We could try harder to avoid creating basic blocks in the common case
new_seen_empty_reg = seen_empty_reg
out = BasicBlock()
if nullable:
# If this is the first nullable positional arg we've seen, create
# a register to track whether anything has been null.
# (We won't *check* the register until the next argument, though.)
if maybe_pos and not seen_empty_reg:
new_seen_empty_reg = Register(bool_rprimitive)
self.add(Assign(new_seen_empty_reg, self.false(), line))
skip = BasicBlock() if maybe_pos else out
keep = BasicBlock()
self.add(Branch(value, skip, keep, Branch.IS_ERROR))
self.activate_block(keep)
# If this could be positional or named and we /might/ have seen a missing
# positional arg, then we need to compile *both* a positional and named
# version! What a pain!
if maybe_pos and maybe_named and seen_empty_reg:
pos_block, named_block = BasicBlock(), BasicBlock()
self.add(Branch(seen_empty_reg, named_block, pos_block, Branch.BOOL))
else:
pos_block = named_block = BasicBlock()
self.goto(pos_block)
if maybe_pos:
self.activate_block(pos_block)
assert star_result
self.translate_special_method_call(
star_result, "append", [value], result_type=None, line=line
)
self.goto(out)
if maybe_named and (not maybe_pos or seen_empty_reg):
self.activate_block(named_block)
assert name is not None
key = self.load_str(name)
assert star2_result
self.translate_special_method_call(
star2_result, "__setitem__", [key, value], result_type=None, line=line
)
self.goto(out)
if nullable and maybe_pos and new_seen_empty_reg:
assert skip is not out
self.activate_block(skip)
self.add(Assign(new_seen_empty_reg, self.true(), line))
self.goto(out)
self.activate_block(out)
seen_empty_reg = new_seen_empty_reg
assert not (star_result or star_values) or has_star
assert not (star2_result or star2_values) or has_star2
if has_star:
# If we managed to make it this far without creating a
# *args list, then we can directly create a
# tuple. Otherwise create the tuple from the list.
if star_result is None:
star_result = self.new_tuple(star_values, line)
else:
star_result = self.primitive_op(list_tuple_op, [star_result], line)
if has_star2 and star2_result is None:
star2_result = self._create_dict(star2_keys, star2_values, line)
return star_result, star2_result
def py_call(
self,
function: Value,
arg_values: list[Value],
line: int,
arg_kinds: list[ArgKind] | None = None,
arg_names: Sequence[str | None] | None = None,
) -> Value:
"""Call a Python function (non-native and slow).
Use py_call_op or py_call_with_kwargs_op for Python function call.
"""
if use_vectorcall(self.options.capi_version):
# More recent Python versions support faster vectorcalls.
result = self._py_vector_call(function, arg_values, line, arg_kinds, arg_names)
if result is not None:
return result
# If all arguments are positional, we can use py_call_op.
if arg_kinds is None or all(kind == ARG_POS for kind in arg_kinds):
return self.call_c(py_call_op, [function] + arg_values, line)
# Otherwise fallback to py_call_with_kwargs_op.
assert arg_names is not None
pos_args_tuple, kw_args_dict = self._construct_varargs(
list(zip(arg_values, arg_kinds, arg_names)), line, has_star=True, has_star2=True
)
assert pos_args_tuple and kw_args_dict
return self.call_c(py_call_with_kwargs_op, [function, pos_args_tuple, kw_args_dict], line)
def _py_vector_call(
self,
function: Value,
arg_values: list[Value],
line: int,
arg_kinds: list[ArgKind] | None = None,
arg_names: Sequence[str | None] | None = None,
) -> Value | None:
"""Call function using the vectorcall API if possible.
Return the return value if successful. Return None if a non-vectorcall
API should be used instead.
"""
# We can do this if all args are positional or named (no *args or **kwargs, not optional).
if arg_kinds is None or all(
not kind.is_star() and not kind.is_optional() for kind in arg_kinds
):
if arg_values:
# Create a C array containing all arguments as boxed values.
coerced_args = [self.coerce(arg, object_rprimitive, line) for arg in arg_values]
arg_ptr = self.setup_rarray(object_rprimitive, coerced_args, object_ptr=True)
else:
arg_ptr = Integer(0, object_pointer_rprimitive)
num_pos = num_positional_args(arg_values, arg_kinds)
keywords = self._vectorcall_keywords(arg_names)
value = self.call_c(
py_vectorcall_op,
[function, arg_ptr, Integer(num_pos, c_size_t_rprimitive), keywords],
line,
)
if arg_values:
# Make sure arguments won't be freed until after the call.
# We need this because RArray doesn't support automatic
# memory management.
self.add(KeepAlive(coerced_args))
return value
return None
def _vectorcall_keywords(self, arg_names: Sequence[str | None] | None) -> Value:
"""Return a reference to a tuple literal with keyword argument names.
Return null pointer if there are no keyword arguments.
"""
if arg_names:
kw_list = [name for name in arg_names if name is not None]
if kw_list:
return self.add(LoadLiteral(tuple(kw_list), object_rprimitive))
return Integer(0, object_rprimitive)
def py_method_call(
self,
obj: Value,
method_name: str,
arg_values: list[Value],
line: int,
arg_kinds: list[ArgKind] | None,
arg_names: Sequence[str | None] | None,
) -> Value:
"""Call a Python method (non-native and slow)."""
if use_method_vectorcall(self.options.capi_version):
# More recent Python versions support faster vectorcalls.
result = self._py_vector_method_call(
obj, method_name, arg_values, line, arg_kinds, arg_names
)
if result is not None:
return result
if arg_kinds is None or all(kind == ARG_POS for kind in arg_kinds):
# Use legacy method call API
method_name_reg = self.load_str(method_name)
return self.call_c(py_method_call_op, [obj, method_name_reg] + arg_values, line)
else:
# Use py_call since it supports keyword arguments (and vectorcalls).
method = self.py_get_attr(obj, method_name, line)
return self.py_call(method, arg_values, line, arg_kinds=arg_kinds, arg_names=arg_names)
def _py_vector_method_call(
self,
obj: Value,
method_name: str,
arg_values: list[Value],
line: int,
arg_kinds: list[ArgKind] | None,
arg_names: Sequence[str | None] | None,
) -> Value | None:
"""Call method using the vectorcall API if possible.
Return the return value if successful. Return None if a non-vectorcall
API should be used instead.
"""
if arg_kinds is None or all(
not kind.is_star() and not kind.is_optional() for kind in arg_kinds
):
method_name_reg = self.load_str(method_name)
coerced_args = [
self.coerce(arg, object_rprimitive, line) for arg in [obj] + arg_values
]
arg_ptr = self.setup_rarray(object_rprimitive, coerced_args, object_ptr=True)
num_pos = num_positional_args(arg_values, arg_kinds)
keywords = self._vectorcall_keywords(arg_names)
value = self.call_c(
py_vectorcall_method_op,
[
method_name_reg,
arg_ptr,
Integer((num_pos + 1) | PY_VECTORCALL_ARGUMENTS_OFFSET, c_size_t_rprimitive),
keywords,
],
line,
)
# Make sure arguments won't be freed until after the call.
# We need this because RArray doesn't support automatic
# memory management.
self.add(KeepAlive(coerced_args))
return value
return None
def call(
self,
decl: FuncDecl,
args: Sequence[Value],
arg_kinds: list[ArgKind],
arg_names: Sequence[str | None],
line: int,
*,
bitmap_args: list[Register] | None = None,
) -> Value:
"""Call a native function.
If bitmap_args is given, they override the values of (some) of the bitmap
arguments used to track the presence of values for certain arguments. By
default, the values of the bitmap arguments are inferred from args.
"""
# Normalize args to positionals.
args = self.native_args_to_positional(
args, arg_kinds, arg_names, decl.sig, line, bitmap_args=bitmap_args
)
return self.add(Call(decl, args, line))
def native_args_to_positional(
self,
args: Sequence[Value],
arg_kinds: list[ArgKind],
arg_names: Sequence[str | None],
sig: FuncSignature,
line: int,
*,
bitmap_args: list[Register] | None = None,
) -> list[Value]:
"""Prepare arguments for a native call.
Given args/kinds/names and a target signature for a native call, map
keyword arguments to their appropriate place in the argument list,
fill in error values for unspecified default arguments,
package arguments that will go into *args/**kwargs into a tuple/dict,
and coerce arguments to the appropriate type.
"""
sig_args = sig.args
n = sig.num_bitmap_args
if n:
sig_args = sig_args[:-n]
sig_arg_kinds = [arg.kind for arg in sig_args]
sig_arg_names = [arg.name for arg in sig_args]
concrete_kinds = [concrete_arg_kind(arg_kind) for arg_kind in arg_kinds]
formal_to_actual = map_actuals_to_formals(
concrete_kinds,
arg_names,
sig_arg_kinds,
sig_arg_names,
lambda n: AnyType(TypeOfAny.special_form),
)
# First scan for */** and construct those
has_star = has_star2 = False
star_arg_entries = []
for lst, arg in zip(formal_to_actual, sig_args):
if arg.kind.is_star():
star_arg_entries.extend([(args[i], arg_kinds[i], arg_names[i]) for i in lst])
has_star = has_star or arg.kind == ARG_STAR
has_star2 = has_star2 or arg.kind == ARG_STAR2
star_arg, star2_arg = self._construct_varargs(
star_arg_entries, line, has_star=has_star, has_star2=has_star2
)
# Flatten out the arguments, loading error values for default
# arguments, constructing tuples/dicts for star args, and
# coercing everything to the expected type.
output_args: list[Value] = []
for lst, arg in zip(formal_to_actual, sig_args):
if arg.kind == ARG_STAR:
assert star_arg
output_arg = star_arg
elif arg.kind == ARG_STAR2:
assert star2_arg
output_arg = star2_arg
elif not lst:
if is_fixed_width_rtype(arg.type):
output_arg = Integer(0, arg.type)
elif is_float_rprimitive(arg.type):
output_arg = Float(0.0)
else:
output_arg = self.add(LoadErrorValue(arg.type, is_borrowed=True))
else:
base_arg = args[lst[0]]
if arg_kinds[lst[0]].is_optional():
output_arg = self.coerce_nullable(base_arg, arg.type, line)
else:
output_arg = self.coerce(base_arg, arg.type, line)
output_args.append(output_arg)
for i in reversed(range(n)):
if bitmap_args and i < len(bitmap_args):
# Use override provided by caller
output_args.append(bitmap_args[i])
continue
# Infer values of bitmap args
bitmap = 0
c = 0
for lst, arg in zip(formal_to_actual, sig_args):
if arg.kind.is_optional() and arg.type.error_overlap:
if i * BITMAP_BITS <= c < (i + 1) * BITMAP_BITS:
if lst:
bitmap |= 1 << (c & (BITMAP_BITS - 1))
c += 1
output_args.append(Integer(bitmap, bitmap_rprimitive))
return output_args
def gen_method_call(
self,
base: Value,
name: str,
arg_values: list[Value],
result_type: RType | None,
line: int,
arg_kinds: list[ArgKind] | None = None,
arg_names: list[str | None] | None = None,
can_borrow: bool = False,
) -> Value:
"""Generate either a native or Python method call."""
# If we have *args, then fallback to Python method call.
if arg_kinds is not None and any(kind.is_star() for kind in arg_kinds):
return self.py_method_call(base, name, arg_values, base.line, arg_kinds, arg_names)
# If the base type is one of ours, do a MethodCall
if (
isinstance(base.type, RInstance)
and base.type.class_ir.is_ext_class
and not base.type.class_ir.builtin_base
):
if base.type.class_ir.has_method(name):
decl = base.type.class_ir.method_decl(name)
if arg_kinds is None:
assert arg_names is None, "arg_kinds not present but arg_names is"
arg_kinds = [ARG_POS for _ in arg_values]
arg_names = [None for _ in arg_values]
else:
assert arg_names is not None, "arg_kinds present but arg_names is not"
# Normalize args to positionals.
assert decl.bound_sig
arg_values = self.native_args_to_positional(
arg_values, arg_kinds, arg_names, decl.bound_sig, line
)
return self.add(MethodCall(base, name, arg_values, line))
elif base.type.class_ir.has_attr(name):
function = self.add(GetAttr(base, name, line))
return self.py_call(
function, arg_values, line, arg_kinds=arg_kinds, arg_names=arg_names
)
elif isinstance(base.type, RUnion):
return self.union_method_call(
base, base.type, name, arg_values, result_type, line, arg_kinds, arg_names
)
# Try to do a special-cased method call
if not arg_kinds or arg_kinds == [ARG_POS] * len(arg_values):
target = self.translate_special_method_call(
base, name, arg_values, result_type, line, can_borrow=can_borrow
)
if target:
return target
# Fall back to Python method call
return self.py_method_call(base, name, arg_values, line, arg_kinds, arg_names)
def union_method_call(
self,
base: Value,
obj_type: RUnion,
name: str,
arg_values: list[Value],
return_rtype: RType | None,
line: int,
arg_kinds: list[ArgKind] | None,
arg_names: list[str | None] | None,
) -> Value:
"""Generate a method call with a union type for the object."""
# Union method call needs a return_rtype for the type of the output register.
# If we don't have one, use object_rprimitive.
return_rtype = return_rtype or object_rprimitive
def call_union_item(value: Value) -> Value:
return self.gen_method_call(
value, name, arg_values, return_rtype, line, arg_kinds, arg_names
)
return self.decompose_union_helper(base, obj_type, return_rtype, call_union_item, line)
# Loading various values
def none(self) -> Value:
"""Load unboxed None value (type: none_rprimitive)."""
return Integer(1, none_rprimitive)
def true(self) -> Value:
"""Load unboxed True value (type: bool_rprimitive)."""
return Integer(1, bool_rprimitive)
def false(self) -> Value:
"""Load unboxed False value (type: bool_rprimitive)."""
return Integer(0, bool_rprimitive)
def none_object(self) -> Value:
"""Load Python None value (type: object_rprimitive)."""
return self.add(LoadAddress(none_object_op.type, none_object_op.src, line=-1))
def load_int(self, value: int) -> Value:
"""Load a tagged (Python) integer literal value."""
if value > MAX_LITERAL_SHORT_INT or value < MIN_LITERAL_SHORT_INT:
return self.add(LoadLiteral(value, int_rprimitive))
else:
return Integer(value)
def load_float(self, value: float) -> Value:
"""Load a float literal value."""
return Float(value)
def load_str(self, value: str) -> Value:
"""Load a str literal value.
This is useful for more than just str literals; for example, method calls
also require a PyObject * form for the name of the method.
"""
return self.add(LoadLiteral(value, str_rprimitive))
def load_bytes(self, value: bytes) -> Value:
"""Load a bytes literal value."""
return self.add(LoadLiteral(value, bytes_rprimitive))
def load_complex(self, value: complex) -> Value:
"""Load a complex literal value."""
return self.add(LoadLiteral(value, object_rprimitive))
def load_static_checked(
self,
typ: RType,
identifier: str,
module_name: str | None = None,
namespace: str = NAMESPACE_STATIC,
line: int = -1,
error_msg: str | None = None,
) -> Value:
if error_msg is None:
error_msg = f'name "{identifier}" is not defined'
ok_block, error_block = BasicBlock(), BasicBlock()
value = self.add(LoadStatic(typ, identifier, module_name, namespace, line=line))
self.add(Branch(value, error_block, ok_block, Branch.IS_ERROR, rare=True))
self.activate_block(error_block)
self.add(RaiseStandardError(RaiseStandardError.NAME_ERROR, error_msg, line))
self.add(Unreachable())
self.activate_block(ok_block)
return value
def load_module(self, name: str) -> Value:
return self.add(LoadStatic(object_rprimitive, name, namespace=NAMESPACE_MODULE))
def get_native_type(self, cls: ClassIR) -> Value:
"""Load native type object."""
fullname = f"{cls.module_name}.{cls.name}"
return self.load_native_type_object(fullname)
def load_native_type_object(self, fullname: str) -> Value:
module, name = fullname.rsplit(".", 1)
return self.add(LoadStatic(object_rprimitive, name, module, NAMESPACE_TYPE))
# Other primitive operations
def binary_op(self, lreg: Value, rreg: Value, op: str, line: int) -> Value:
"""Perform a binary operation.
Generate specialized operations based on operand types, with a fallback
to generic operations.
"""
ltype = lreg.type
rtype = rreg.type
# Special case tuple comparison here so that nested tuples can be supported
if isinstance(ltype, RTuple) and isinstance(rtype, RTuple) and op in ("==", "!="):
return self.compare_tuples(lreg, rreg, op, line)
# Special case == and != when we can resolve the method call statically
if op in ("==", "!="):
value = self.translate_eq_cmp(lreg, rreg, op, line)
if value is not None:
return value
# Special case various ops
if op in ("is", "is not"):
return self.translate_is_op(lreg, rreg, op, line)
# TODO: modify 'str' to use same interface as 'compare_bytes' as it avoids
# call to PyErr_Occurred()
if is_str_rprimitive(ltype) and is_str_rprimitive(rtype) and op in ("==", "!="):
return self.compare_strings(lreg, rreg, op, line)
if is_bytes_rprimitive(ltype) and is_bytes_rprimitive(rtype) and op in ("==", "!="):
return self.compare_bytes(lreg, rreg, op, line)
if is_bool_rprimitive(ltype) and is_bool_rprimitive(rtype) and op in BOOL_BINARY_OPS:
if op in ComparisonOp.signed_ops:
return self.bool_comparison_op(lreg, rreg, op, line)
else:
return self.bool_bitwise_op(lreg, rreg, op[0], line)
if isinstance(rtype, RInstance) and op in ("in", "not in"):
return self.translate_instance_contains(rreg, lreg, op, line)
if is_fixed_width_rtype(ltype):
if op in FIXED_WIDTH_INT_BINARY_OPS:
if op.endswith("="):
op = op[:-1]
if op != "//":
op_id = int_op_to_id[op]
else:
op_id = IntOp.DIV
if is_bool_rprimitive(rtype) or is_bit_rprimitive(rtype):
rreg = self.coerce(rreg, ltype, line)
rtype = ltype
if is_fixed_width_rtype(rtype) or is_tagged(rtype):
return self.fixed_width_int_op(ltype, lreg, rreg, op_id, line)
if isinstance(rreg, Integer):
return self.fixed_width_int_op(
ltype, lreg, self.coerce(rreg, ltype, line), op_id, line
)
elif op in ComparisonOp.signed_ops:
if is_int_rprimitive(rtype):
rreg = self.coerce_int_to_fixed_width(rreg, ltype, line)
elif is_bool_rprimitive(rtype) or is_bit_rprimitive(rtype):
rreg = self.coerce(rreg, ltype, line)
op_id = ComparisonOp.signed_ops[op]
if is_fixed_width_rtype(rreg.type):
return self.comparison_op(lreg, rreg, op_id, line)
if isinstance(rreg, Integer):
return self.comparison_op(lreg, self.coerce(rreg, ltype, line), op_id, line)
elif is_fixed_width_rtype(rtype):
if op in FIXED_WIDTH_INT_BINARY_OPS:
if op.endswith("="):
op = op[:-1]
if op != "//":
op_id = int_op_to_id[op]
else:
op_id = IntOp.DIV
if isinstance(lreg, Integer):
return self.fixed_width_int_op(
rtype, self.coerce(lreg, rtype, line), rreg, op_id, line
)
if is_tagged(ltype):
return self.fixed_width_int_op(rtype, lreg, rreg, op_id, line)
if is_bool_rprimitive(ltype) or is_bit_rprimitive(ltype):
lreg = self.coerce(lreg, rtype, line)
return self.fixed_width_int_op(rtype, lreg, rreg, op_id, line)
elif op in ComparisonOp.signed_ops:
if is_int_rprimitive(ltype):
lreg = self.coerce_int_to_fixed_width(lreg, rtype, line)
elif is_bool_rprimitive(ltype) or is_bit_rprimitive(ltype):
lreg = self.coerce(lreg, rtype, line)
op_id = ComparisonOp.signed_ops[op]
if isinstance(lreg, Integer):
return self.comparison_op(self.coerce(lreg, rtype, line), rreg, op_id, line)
if is_fixed_width_rtype(lreg.type):
return self.comparison_op(lreg, rreg, op_id, line)
if is_float_rprimitive(ltype) or is_float_rprimitive(rtype):
if isinstance(lreg, Integer):
lreg = Float(float(lreg.numeric_value()))
elif isinstance(rreg, Integer):
rreg = Float(float(rreg.numeric_value()))
elif is_int_rprimitive(lreg.type):
lreg = self.int_to_float(lreg, line)
elif is_int_rprimitive(rreg.type):
rreg = self.int_to_float(rreg, line)
if is_float_rprimitive(lreg.type) and is_float_rprimitive(rreg.type):
if op in float_comparison_op_to_id:
return self.compare_floats(lreg, rreg, float_comparison_op_to_id[op], line)
if op.endswith("="):
base_op = op[:-1]
else:
base_op = op
if base_op in float_op_to_id:
return self.float_op(lreg, rreg, base_op, line)
dunder_op = self.dunder_op(lreg, rreg, op, line)
if dunder_op:
return dunder_op
primitive_ops_candidates = binary_ops.get(op, [])
target = self.matching_primitive_op(primitive_ops_candidates, [lreg, rreg], line)
assert target, "Unsupported binary operation: %s" % op
return target
def dunder_op(self, lreg: Value, rreg: Value | None, op: str, line: int) -> Value | None:
"""
Dispatch a dunder method if applicable.
For example for `a + b` it will use `a.__add__(b)` which can lead to higher performance
due to the fact that the method could be already compiled and optimized instead of going
all the way through `PyNumber_Add(a, b)` python api (making a jump into the python DL).
"""
ltype = lreg.type
if not isinstance(ltype, RInstance):
return None
method_name = op_methods.get(op) if rreg else unary_op_methods.get(op)
if method_name is None:
return None
if not ltype.class_ir.has_method(method_name):
return None
decl = ltype.class_ir.method_decl(method_name)
if not rreg and len(decl.sig.args) != 1:
return None
if rreg and (len(decl.sig.args) != 2 or not is_subtype(rreg.type, decl.sig.args[1].type)):
return None
if rreg and is_subtype(not_implemented_op.type, decl.sig.ret_type):
# If the method is able to return NotImplemented, we should not optimize it.
# We can just let go so it will be handled through the python api.
return None
args = [rreg] if rreg else []
return self.gen_method_call(lreg, method_name, args, decl.sig.ret_type, line)
def check_tagged_short_int(self, val: Value, line: int, negated: bool = False) -> Value:
"""Check if a tagged integer is a short integer.
Return the result of the check (value of type 'bit').
"""
int_tag = Integer(1, c_pyssize_t_rprimitive, line)
bitwise_and = self.int_op(c_pyssize_t_rprimitive, val, int_tag, IntOp.AND, line)
zero = Integer(0, c_pyssize_t_rprimitive, line)
op = ComparisonOp.NEQ if negated else ComparisonOp.EQ
check = self.comparison_op(bitwise_and, zero, op, line)
return check
def compare_strings(self, lhs: Value, rhs: Value, op: str, line: int) -> Value:
"""Compare two strings"""
compare_result = self.call_c(unicode_compare, [lhs, rhs], line)
error_constant = Integer(-1, c_int_rprimitive, line)
compare_error_check = self.add(
ComparisonOp(compare_result, error_constant, ComparisonOp.EQ, line)
)
exception_check, propagate, final_compare = BasicBlock(), BasicBlock(), BasicBlock()
branch = Branch(compare_error_check, exception_check, final_compare, Branch.BOOL)
branch.negated = False
self.add(branch)
self.activate_block(exception_check)
check_error_result = self.call_c(err_occurred_op, [], line)
null = Integer(0, pointer_rprimitive, line)
compare_error_check = self.add(
ComparisonOp(check_error_result, null, ComparisonOp.NEQ, line)
)
branch = Branch(compare_error_check, propagate, final_compare, Branch.BOOL)
branch.negated = False
self.add(branch)
self.activate_block(propagate)
self.call_c(keep_propagating_op, [], line)
self.goto(final_compare)
self.activate_block(final_compare)
op_type = ComparisonOp.EQ if op == "==" else ComparisonOp.NEQ
return self.add(ComparisonOp(compare_result, Integer(0, c_int_rprimitive), op_type, line))
def compare_bytes(self, lhs: Value, rhs: Value, op: str, line: int) -> Value:
compare_result = self.call_c(bytes_compare, [lhs, rhs], line)
op_type = ComparisonOp.EQ if op == "==" else ComparisonOp.NEQ
return self.add(ComparisonOp(compare_result, Integer(1, c_int_rprimitive), op_type, line))
def compare_tuples(self, lhs: Value, rhs: Value, op: str, line: int = -1) -> Value:
"""Compare two tuples item by item"""
# type cast to pass mypy check
assert isinstance(lhs.type, RTuple) and isinstance(rhs.type, RTuple)
equal = True if op == "==" else False
result = Register(bool_rprimitive)
# empty tuples
if len(lhs.type.types) == 0 and len(rhs.type.types) == 0:
self.add(Assign(result, self.true() if equal else self.false(), line))
return result
length = len(lhs.type.types)
false_assign, true_assign, out = BasicBlock(), BasicBlock(), BasicBlock()
check_blocks = [BasicBlock() for _ in range(length)]
lhs_items = [self.add(TupleGet(lhs, i, line)) for i in range(length)]
rhs_items = [self.add(TupleGet(rhs, i, line)) for i in range(length)]
if equal:
early_stop, final = false_assign, true_assign
else:
early_stop, final = true_assign, false_assign
for i in range(len(lhs.type.types)):
if i != 0:
self.activate_block(check_blocks[i])
lhs_item = lhs_items[i]
rhs_item = rhs_items[i]
compare = self.binary_op(lhs_item, rhs_item, op, line)
# Cast to bool if necessary since most types uses comparison returning a object type
# See generic_ops.py for more information
if not is_bool_rprimitive(compare.type):
compare = self.primitive_op(bool_op, [compare], line)
if i < len(lhs.type.types) - 1:
branch = Branch(compare, early_stop, check_blocks[i + 1], Branch.BOOL)
else:
branch = Branch(compare, early_stop, final, Branch.BOOL)
# if op is ==, we branch on false, else branch on true
branch.negated = equal
self.add(branch)
self.activate_block(false_assign)
self.add(Assign(result, self.false(), line))
self.goto(out)
self.activate_block(true_assign)
self.add(Assign(result, self.true(), line))
self.goto_and_activate(out)
return result
def translate_instance_contains(self, inst: Value, item: Value, op: str, line: int) -> Value:
res = self.gen_method_call(inst, "__contains__", [item], None, line)
if not is_bool_rprimitive(res.type):
res = self.primitive_op(bool_op, [res], line)
if op == "not in":
res = self.bool_bitwise_op(res, Integer(1, rtype=bool_rprimitive), "^", line)
return res
def bool_bitwise_op(self, lreg: Value, rreg: Value, op: str, line: int) -> Value:
if op == "&":
code = IntOp.AND
elif op == "|":
code = IntOp.OR
elif op == "^":
code = IntOp.XOR
else:
assert False, op
return self.add(IntOp(bool_rprimitive, lreg, rreg, code, line))
def bool_comparison_op(self, lreg: Value, rreg: Value, op: str, line: int) -> Value:
op_id = ComparisonOp.signed_ops[op]
return self.comparison_op(lreg, rreg, op_id, line)
def unary_not(self, value: Value, line: int) -> Value:
mask = Integer(1, value.type, line)
return self.int_op(value.type, value, mask, IntOp.XOR, line)
def unary_op(self, value: Value, expr_op: str, line: int) -> Value:
typ = value.type
if is_bool_rprimitive(typ) or is_bit_rprimitive(typ):
if expr_op == "not":
return self.unary_not(value, line)
if expr_op == "+":
return value
if is_fixed_width_rtype(typ):
if expr_op == "-":
# Translate to '0 - x'
return self.int_op(typ, Integer(0, typ), value, IntOp.SUB, line)
elif expr_op == "~":
if typ.is_signed:
# Translate to 'x ^ -1'
return self.int_op(typ, value, Integer(-1, typ), IntOp.XOR, line)
else:
# Translate to 'x ^ 0xff...'
mask = (1 << (typ.size * 8)) - 1
return self.int_op(typ, value, Integer(mask, typ), IntOp.XOR, line)
elif expr_op == "+":
return value
if is_float_rprimitive(typ):
if expr_op == "-":
return self.add(FloatNeg(value, line))
elif expr_op == "+":
return value
if isinstance(value, Integer):
# TODO: Overflow? Unsigned?
num = value.value
if is_short_int_rprimitive(typ):
num >>= 1
return Integer(-num, typ, value.line)
if is_tagged(typ) and expr_op == "+":
return value
if isinstance(value, Float):
return Float(-value.value, value.line)
if isinstance(typ, RInstance):
result = self.dunder_op(value, None, expr_op, line)
if result is not None:
return result
primitive_ops_candidates = unary_ops.get(expr_op, [])
target = self.matching_primitive_op(primitive_ops_candidates, [value], line)
assert target, "Unsupported unary operation: %s" % expr_op
return target
def make_dict(self, key_value_pairs: Sequence[DictEntry], line: int) -> Value:
result: Value | None = None
keys: list[Value] = []
values: list[Value] = []
for key, value in key_value_pairs:
if key is not None:
# key:value
if result is None:
keys.append(key)
values.append(value)
continue
self.translate_special_method_call(
result, "__setitem__", [key, value], result_type=None, line=line
)
else:
# **value
if result is None:
result = self._create_dict(keys, values, line)
self.call_c(dict_update_in_display_op, [result, value], line=line)
if result is None:
result = self._create_dict(keys, values, line)
return result
def new_list_op_with_length(self, length: Value, line: int) -> Value:
"""This function returns an uninitialized list.
If the length is non-zero, the caller must initialize the list, before
it can be made visible to user code -- otherwise the list object is broken.
You might need further initialization with `new_list_set_item_op` op.
Args:
length: desired length of the new list. The rtype should be
c_pyssize_t_rprimitive
line: line number
"""
return self.call_c(new_list_op, [length], line)
def new_list_op(self, values: list[Value], line: int) -> Value:
length: list[Value] = [Integer(len(values), c_pyssize_t_rprimitive, line)]
if len(values) >= LIST_BUILDING_EXPANSION_THRESHOLD:
return self.call_c(list_build_op, length + values, line)
# If the length of the list is less than the threshold,
# LIST_BUILDING_EXPANSION_THRESHOLD, we directly expand the
# for-loop and inline the SetMem operation, which is faster
# than list_build_op, however generates more code.
result_list = self.call_c(new_list_op, length, line)
if not values:
return result_list
args = [self.coerce(item, object_rprimitive, line) for item in values]
ob_item_base = self.add(PrimitiveOp([result_list], list_items, line))
for i in range(len(values)):
self.primitive_op(
buf_init_item, [ob_item_base, Integer(i, c_pyssize_t_rprimitive), args[i]], line
)
self.add(KeepAlive([result_list]))
return result_list
def new_set_op(self, values: list[Value], line: int) -> Value:
return self.primitive_op(new_set_op, values, line)
def setup_rarray(
self, item_type: RType, values: Sequence[Value], *, object_ptr: bool = False
) -> Value:
"""Declare and initialize a new RArray, returning its address."""
array = Register(RArray(item_type, len(values)))
self.add(AssignMulti(array, list(values)))
return self.add(
LoadAddress(object_pointer_rprimitive if object_ptr else c_pointer_rprimitive, array)
)
def shortcircuit_helper(
self,
op: str,
expr_type: RType,
left: Callable[[], Value],
right: Callable[[], Value],
line: int,
) -> Value:
# Having actual Phi nodes would be really nice here!
target = Register(expr_type)
# left_body takes the value of the left side, right_body the right
left_body, right_body, next_block = BasicBlock(), BasicBlock(), BasicBlock()
# true_body is taken if the left is true, false_body if it is false.
# For 'and' the value is the right side if the left is true, and for 'or'
# it is the right side if the left is false.
true_body, false_body = (right_body, left_body) if op == "and" else (left_body, right_body)
left_value = left()
self.add_bool_branch(left_value, true_body, false_body)
self.activate_block(left_body)
left_coerced = self.coerce(left_value, expr_type, line)
self.add(Assign(target, left_coerced))
self.goto(next_block)
self.activate_block(right_body)
right_value = right()
right_coerced = self.coerce(right_value, expr_type, line)
self.add(Assign(target, right_coerced))
self.goto(next_block)
self.activate_block(next_block)
return target
def bool_value(self, value: Value) -> Value:
"""Return bool(value).
The result type can be bit_rprimitive or bool_rprimitive.
"""
if is_bool_rprimitive(value.type) or is_bit_rprimitive(value.type):
result = value
elif is_runtime_subtype(value.type, int_rprimitive):
zero = Integer(0, short_int_rprimitive)
result = self.comparison_op(value, zero, ComparisonOp.NEQ, value.line)
elif is_fixed_width_rtype(value.type):
zero = Integer(0, value.type)
result = self.add(ComparisonOp(value, zero, ComparisonOp.NEQ))
elif is_same_type(value.type, str_rprimitive):
result = self.call_c(str_check_if_true, [value], value.line)
elif is_same_type(value.type, list_rprimitive) or is_same_type(
value.type, dict_rprimitive
):
length = self.builtin_len(value, value.line)
zero = Integer(0)
result = self.binary_op(length, zero, "!=", value.line)
elif (
isinstance(value.type, RInstance)
and value.type.class_ir.is_ext_class
and value.type.class_ir.has_method("__bool__")
):
# Directly call the __bool__ method on classes that have it.
result = self.gen_method_call(value, "__bool__", [], bool_rprimitive, value.line)
elif is_float_rprimitive(value.type):
result = self.compare_floats(value, Float(0.0), FloatComparisonOp.NEQ, value.line)
else:
value_type = optional_value_type(value.type)
if value_type is not None:
not_none = self.translate_is_op(value, self.none_object(), "is not", value.line)
always_truthy = False
if isinstance(value_type, RInstance):
# check whether X.__bool__ is always just the default (object.__bool__)
if not value_type.class_ir.has_method(
"__bool__"
) and value_type.class_ir.is_method_final("__bool__"):
always_truthy = True
if always_truthy:
result = not_none
else:
# "X | None" where X may be falsey and requires a check
result = Register(bit_rprimitive)
true, false, end = BasicBlock(), BasicBlock(), BasicBlock()
branch = Branch(not_none, true, false, Branch.BOOL)
self.add(branch)
self.activate_block(true)
# unbox_or_cast instead of coerce because we want the
# type to change even if it is a subtype.
remaining = self.unbox_or_cast(value, value_type, value.line)
as_bool = self.bool_value(remaining)
self.add(Assign(result, as_bool))
self.goto(end)
self.activate_block(false)
self.add(Assign(result, Integer(0, bit_rprimitive)))
self.goto(end)
self.activate_block(end)
else:
result = self.primitive_op(bool_op, [value], value.line)
return result
def add_bool_branch(self, value: Value, true: BasicBlock, false: BasicBlock) -> None:
opt_value_type = optional_value_type(value.type)
if opt_value_type is None:
bool_value = self.bool_value(value)
self.add(Branch(bool_value, true, false, Branch.BOOL))
else:
# Special-case optional types
is_none = self.translate_is_op(value, self.none_object(), "is not", value.line)
branch = Branch(is_none, true, false, Branch.BOOL)
self.add(branch)
always_truthy = False
if isinstance(opt_value_type, RInstance):
# check whether X.__bool__ is always just the default (object.__bool__)
if not opt_value_type.class_ir.has_method(
"__bool__"
) and opt_value_type.class_ir.is_method_final("__bool__"):
always_truthy = True
if not always_truthy:
# Optional[X] where X may be falsey and requires a check
branch.true = BasicBlock()
self.activate_block(branch.true)
# unbox_or_cast instead of coerce because we want the
# type to change even if it is a subtype.
remaining = self.unbox_or_cast(value, opt_value_type, value.line)
self.add_bool_branch(remaining, true, false)
def call_c(
self,
desc: CFunctionDescription,
args: list[Value],
line: int,
result_type: RType | None = None,
) -> Value:
"""Call function using C/native calling convention (not a Python callable)."""
# Handle void function via singleton RVoid instance
coerced = []
# Coerce fixed number arguments
for i in range(min(len(args), len(desc.arg_types))):
formal_type = desc.arg_types[i]
arg = args[i]
arg = self.coerce(arg, formal_type, line)
coerced.append(arg)
# Reorder args if necessary
if desc.ordering is not None:
assert desc.var_arg_type is None
coerced = [coerced[i] for i in desc.ordering]
# Coerce any var_arg
var_arg_idx = -1
if desc.var_arg_type is not None:
var_arg_idx = len(desc.arg_types)
for i in range(len(desc.arg_types), len(args)):
arg = args[i]
arg = self.coerce(arg, desc.var_arg_type, line)
coerced.append(arg)
# Add extra integer constant if any
for item in desc.extra_int_constants:
val, typ = item
extra_int_constant = Integer(val, typ, line)
coerced.append(extra_int_constant)
error_kind = desc.error_kind
if error_kind == ERR_NEG_INT:
# Handled with an explicit comparison
error_kind = ERR_NEVER
target = self.add(
CallC(
desc.c_function_name,
coerced,
desc.return_type,
desc.steals,
desc.is_borrowed,
error_kind,
line,
var_arg_idx,
is_pure=desc.is_pure,
)
)
if desc.is_borrowed:
# If the result is borrowed, force the arguments to be
# kept alive afterwards, as otherwise the result might be
# immediately freed, at the risk of a dangling pointer.
for arg in coerced:
if not isinstance(arg, (Integer, LoadLiteral)):
self.keep_alives.append(arg)
if desc.error_kind == ERR_NEG_INT:
comp = ComparisonOp(target, Integer(0, desc.return_type, line), ComparisonOp.SGE, line)
comp.error_kind = ERR_FALSE
self.add(comp)
if desc.truncated_type is None:
result = target
else:
truncate = self.add(Truncate(target, desc.truncated_type))
result = truncate
if result_type and not is_runtime_subtype(result.type, result_type):
if is_none_rprimitive(result_type):
# Special case None return. The actual result may actually be a bool
# and so we can't just coerce it.
result = self.none()
else:
result = self.coerce(target, result_type, line, can_borrow=desc.is_borrowed)
return result
def matching_call_c(
self,
candidates: list[CFunctionDescription],
args: list[Value],
line: int,
result_type: RType | None = None,
can_borrow: bool = False,
) -> Value | None:
matching: CFunctionDescription | None = None
for desc in candidates:
if len(desc.arg_types) != len(args):
continue
if all(
is_subtype(actual.type, formal) for actual, formal in zip(args, desc.arg_types)
) and (not desc.is_borrowed or can_borrow):
if matching:
assert matching.priority != desc.priority, "Ambiguous:\n1) {}\n2) {}".format(
matching, desc
)
if desc.priority > matching.priority:
matching = desc
else:
matching = desc
if matching:
target = self.call_c(matching, args, line, result_type)
return target
return None
def primitive_op(
self,
desc: PrimitiveDescription,
args: list[Value],
line: int,
result_type: RType | None = None,
) -> Value:
"""Add a primitive op."""
# Does this primitive map into calling a Python C API
# or an internal mypyc C API function?
if desc.c_function_name:
# TODO: Generate PrimitiveOps here and transform them into CallC
# ops only later in the lowering pass
c_desc = CFunctionDescription(
desc.name,
desc.arg_types,
desc.return_type,
desc.var_arg_type,
desc.truncated_type,
desc.c_function_name,
desc.error_kind,
desc.steals,
desc.is_borrowed,
desc.ordering,
desc.extra_int_constants,
desc.priority,
is_pure=desc.is_pure,
)
return self.call_c(c_desc, args, line, result_type=result_type)
# This primitive gets transformed in a lowering pass to
# lower-level IR ops using a custom transform function.
coerced = []
# Coerce fixed number arguments
for i in range(min(len(args), len(desc.arg_types))):
formal_type = desc.arg_types[i]
arg = args[i]
assert formal_type is not None # TODO
arg = self.coerce(arg, formal_type, line)
coerced.append(arg)
assert desc.ordering is None
assert desc.var_arg_type is None
assert not desc.extra_int_constants
target = self.add(PrimitiveOp(coerced, desc, line=line))
if desc.is_borrowed:
# If the result is borrowed, force the arguments to be
# kept alive afterwards, as otherwise the result might be
# immediately freed, at the risk of a dangling pointer.
for arg in coerced:
if not isinstance(arg, (Integer, LoadLiteral)):
self.keep_alives.append(arg)
if desc.error_kind == ERR_NEG_INT:
comp = ComparisonOp(target, Integer(0, desc.return_type, line), ComparisonOp.SGE, line)
comp.error_kind = ERR_FALSE
self.add(comp)
assert desc.truncated_type is None
result = target
if result_type and not is_runtime_subtype(result.type, result_type):
if is_none_rprimitive(result_type):
# Special case None return. The actual result may actually be a bool
# and so we can't just coerce it.
result = self.none()
else:
result = self.coerce(result, result_type, line, can_borrow=desc.is_borrowed)
return result
def matching_primitive_op(
self,
candidates: list[PrimitiveDescription],
args: list[Value],
line: int,
result_type: RType | None = None,
can_borrow: bool = False,
) -> Value | None:
matching: PrimitiveDescription | None = None
for desc in candidates:
if len(desc.arg_types) != len(args):
continue
if all(
# formal is not None and # TODO
is_subtype(actual.type, formal)
for actual, formal in zip(args, desc.arg_types)
) and (not desc.is_borrowed or can_borrow):
if matching:
assert matching.priority != desc.priority, "Ambiguous:\n1) {}\n2) {}".format(
matching, desc
)
if desc.priority > matching.priority:
matching = desc
else:
matching = desc
if matching:
return self.primitive_op(matching, args, line=line, result_type=result_type)
return None
def int_op(self, type: RType, lhs: Value, rhs: Value, op: int, line: int = -1) -> Value:
"""Generate a native integer binary op.
Use native/C semantics, which sometimes differ from Python
semantics.
Args:
type: Either int64_rprimitive or int32_rprimitive
op: IntOp.* constant (e.g. IntOp.ADD)
"""
return self.add(IntOp(type, lhs, rhs, op, line))
def float_op(self, lhs: Value, rhs: Value, op: str, line: int) -> Value:
"""Generate a native float binary arithmetic operation.
This follows Python semantics (e.g. raise exception on division by zero).
Add a FloatOp directly if you want low-level semantics.
Args:
op: Binary operator (e.g. '+' or '*')
"""
op_id = float_op_to_id[op]
if op_id in (FloatOp.DIV, FloatOp.MOD):
if not (isinstance(rhs, Float) and rhs.value != 0.0):
c = self.compare_floats(rhs, Float(0.0), FloatComparisonOp.EQ, line)
err, ok = BasicBlock(), BasicBlock()
self.add(Branch(c, err, ok, Branch.BOOL, rare=True))
self.activate_block(err)
if op_id == FloatOp.DIV:
msg = "float division by zero"
else:
msg = "float modulo"
self.add(RaiseStandardError(RaiseStandardError.ZERO_DIVISION_ERROR, msg, line))
self.add(Unreachable())
self.activate_block(ok)
if op_id == FloatOp.MOD:
# Adjust the result to match Python semantics (FloatOp follows C semantics).
return self.float_mod(lhs, rhs, line)
else:
return self.add(FloatOp(lhs, rhs, op_id, line))
def float_mod(self, lhs: Value, rhs: Value, line: int) -> Value:
"""Perform x % y on floats using Python semantics."""
mod = self.add(FloatOp(lhs, rhs, FloatOp.MOD, line))
res = Register(float_rprimitive)
self.add(Assign(res, mod))
tricky, adjust, copysign, done = BasicBlock(), BasicBlock(), BasicBlock(), BasicBlock()
is_zero = self.add(FloatComparisonOp(res, Float(0.0), FloatComparisonOp.EQ, line))
self.add(Branch(is_zero, copysign, tricky, Branch.BOOL))
self.activate_block(tricky)
same_signs = self.is_same_float_signs(lhs, rhs, line)
self.add(Branch(same_signs, done, adjust, Branch.BOOL))
self.activate_block(adjust)
adj = self.float_op(res, rhs, "+", line)
self.add(Assign(res, adj))
self.add(Goto(done))
self.activate_block(copysign)
# If the remainder is zero, CPython ensures the result has the
# same sign as the denominator.
adj = self.primitive_op(copysign_op, [Float(0.0), rhs], line)
self.add(Assign(res, adj))
self.add(Goto(done))
self.activate_block(done)
return res
def compare_floats(self, lhs: Value, rhs: Value, op: int, line: int) -> Value:
return self.add(FloatComparisonOp(lhs, rhs, op, line))
def fixed_width_int_op(
self, type: RPrimitive, lhs: Value, rhs: Value, op: int, line: int
) -> Value:
"""Generate a binary op using Python fixed-width integer semantics.
These may differ in overflow/rounding behavior from native/C ops.
Args:
type: Either int64_rprimitive or int32_rprimitive
op: IntOp.* constant (e.g. IntOp.ADD)
"""
lhs = self.coerce(lhs, type, line)
rhs = self.coerce(rhs, type, line)
if op == IntOp.DIV:
if isinstance(rhs, Integer) and rhs.value not in (-1, 0):
if not type.is_signed:
return self.int_op(type, lhs, rhs, IntOp.DIV, line)
else:
# Inline simple division by a constant, so that C
# compilers can optimize more
return self.inline_fixed_width_divide(type, lhs, rhs, line)
if is_int64_rprimitive(type):
prim = int64_divide_op
elif is_int32_rprimitive(type):
prim = int32_divide_op
elif is_int16_rprimitive(type):
prim = int16_divide_op
elif is_uint8_rprimitive(type):
self.check_for_zero_division(rhs, type, line)
return self.int_op(type, lhs, rhs, op, line)
else:
assert False, type
return self.call_c(prim, [lhs, rhs], line)
if op == IntOp.MOD:
if isinstance(rhs, Integer) and rhs.value not in (-1, 0):
if not type.is_signed:
return self.int_op(type, lhs, rhs, IntOp.MOD, line)
else:
# Inline simple % by a constant, so that C
# compilers can optimize more
return self.inline_fixed_width_mod(type, lhs, rhs, line)
if is_int64_rprimitive(type):
prim = int64_mod_op
elif is_int32_rprimitive(type):
prim = int32_mod_op
elif is_int16_rprimitive(type):
prim = int16_mod_op
elif is_uint8_rprimitive(type):
self.check_for_zero_division(rhs, type, line)
return self.int_op(type, lhs, rhs, op, line)
else:
assert False, type
return self.call_c(prim, [lhs, rhs], line)
return self.int_op(type, lhs, rhs, op, line)
def check_for_zero_division(self, rhs: Value, type: RType, line: int) -> None:
err, ok = BasicBlock(), BasicBlock()
is_zero = self.binary_op(rhs, Integer(0, type), "==", line)
self.add(Branch(is_zero, err, ok, Branch.BOOL))
self.activate_block(err)
self.add(
RaiseStandardError(
RaiseStandardError.ZERO_DIVISION_ERROR, "integer division or modulo by zero", line
)
)
self.add(Unreachable())
self.activate_block(ok)
def inline_fixed_width_divide(self, type: RType, lhs: Value, rhs: Value, line: int) -> Value:
# Perform floor division (native division truncates)
res = Register(type)
div = self.int_op(type, lhs, rhs, IntOp.DIV, line)
self.add(Assign(res, div))
same_signs = self.is_same_native_int_signs(type, lhs, rhs, line)
tricky, adjust, done = BasicBlock(), BasicBlock(), BasicBlock()
self.add(Branch(same_signs, done, tricky, Branch.BOOL))
self.activate_block(tricky)
mul = self.int_op(type, res, rhs, IntOp.MUL, line)
mul_eq = self.add(ComparisonOp(mul, lhs, ComparisonOp.EQ, line))
self.add(Branch(mul_eq, done, adjust, Branch.BOOL))
self.activate_block(adjust)
adj = self.int_op(type, res, Integer(1, type), IntOp.SUB, line)
self.add(Assign(res, adj))
self.add(Goto(done))
self.activate_block(done)
return res
def inline_fixed_width_mod(self, type: RType, lhs: Value, rhs: Value, line: int) -> Value:
# Perform floor modulus
res = Register(type)
mod = self.int_op(type, lhs, rhs, IntOp.MOD, line)
self.add(Assign(res, mod))
same_signs = self.is_same_native_int_signs(type, lhs, rhs, line)
tricky, adjust, done = BasicBlock(), BasicBlock(), BasicBlock()
self.add(Branch(same_signs, done, tricky, Branch.BOOL))
self.activate_block(tricky)
is_zero = self.add(ComparisonOp(res, Integer(0, type), ComparisonOp.EQ, line))
self.add(Branch(is_zero, done, adjust, Branch.BOOL))
self.activate_block(adjust)
adj = self.int_op(type, res, rhs, IntOp.ADD, line)
self.add(Assign(res, adj))
self.add(Goto(done))
self.activate_block(done)
return res
def is_same_native_int_signs(self, type: RType, a: Value, b: Value, line: int) -> Value:
neg1 = self.add(ComparisonOp(a, Integer(0, type), ComparisonOp.SLT, line))
neg2 = self.add(ComparisonOp(b, Integer(0, type), ComparisonOp.SLT, line))
return self.add(ComparisonOp(neg1, neg2, ComparisonOp.EQ, line))
def is_same_float_signs(self, a: Value, b: Value, line: int) -> Value:
neg1 = self.add(FloatComparisonOp(a, Float(0.0), FloatComparisonOp.LT, line))
neg2 = self.add(FloatComparisonOp(b, Float(0.0), FloatComparisonOp.LT, line))
return self.add(ComparisonOp(neg1, neg2, ComparisonOp.EQ, line))
def comparison_op(self, lhs: Value, rhs: Value, op: int, line: int) -> Value:
return self.add(ComparisonOp(lhs, rhs, op, line))
def builtin_len(self, val: Value, line: int, use_pyssize_t: bool = False) -> Value:
"""Generate len(val).
Return short_int_rprimitive by default.
Return c_pyssize_t if use_pyssize_t is true (unshifted).
"""
typ = val.type
size_value = None
if is_list_rprimitive(typ) or is_tuple_rprimitive(typ) or is_bytes_rprimitive(typ):
size_value = self.primitive_op(var_object_size, [val], line)
elif is_set_rprimitive(typ):
elem_address = self.add(GetElementPtr(val, PySetObject, "used"))
size_value = self.add(LoadMem(c_pyssize_t_rprimitive, elem_address))
self.add(KeepAlive([val]))
elif is_dict_rprimitive(typ):
size_value = self.call_c(dict_ssize_t_size_op, [val], line)
elif is_str_rprimitive(typ):
size_value = self.call_c(str_ssize_t_size_op, [val], line)
if size_value is not None:
if use_pyssize_t:
return size_value
offset = Integer(1, c_pyssize_t_rprimitive, line)
return self.int_op(short_int_rprimitive, size_value, offset, IntOp.LEFT_SHIFT, line)
if isinstance(typ, RInstance):
# TODO: Support use_pyssize_t
assert not use_pyssize_t
length = self.gen_method_call(val, "__len__", [], int_rprimitive, line)
length = self.coerce(length, int_rprimitive, line)
ok, fail = BasicBlock(), BasicBlock()
cond = self.binary_op(length, Integer(0), ">=", line)
self.add_bool_branch(cond, ok, fail)
self.activate_block(fail)
self.add(
RaiseStandardError(
RaiseStandardError.VALUE_ERROR, "__len__() should return >= 0", line
)
)
self.add(Unreachable())
self.activate_block(ok)
return length
# generic case
if use_pyssize_t:
return self.call_c(generic_ssize_t_len_op, [val], line)
else:
return self.call_c(generic_len_op, [val], line)
def new_tuple(self, items: list[Value], line: int) -> Value:
size: Value = Integer(len(items), c_pyssize_t_rprimitive)
return self.call_c(new_tuple_op, [size] + items, line)
def new_tuple_with_length(self, length: Value, line: int) -> Value:
"""This function returns an uninitialized tuple.
If the length is non-zero, the caller must initialize the tuple, before
it can be made visible to user code -- otherwise the tuple object is broken.
You might need further initialization with `new_tuple_set_item_op` op.
Args:
length: desired length of the new tuple. The rtype should be
c_pyssize_t_rprimitive
line: line number
"""
return self.call_c(new_tuple_with_length_op, [length], line)
def int_to_float(self, n: Value, line: int) -> Value:
return self.primitive_op(int_to_float_op, [n], line)
# Internal helpers
def decompose_union_helper(
self,
obj: Value,
rtype: RUnion,
result_type: RType,
process_item: Callable[[Value], Value],
line: int,
) -> Value:
"""Generate isinstance() + specialized operations for union items.
Say, for Union[A, B] generate ops resembling this (pseudocode):
if isinstance(obj, A):
result = <result of process_item(cast(A, obj)>
else:
result = <result of process_item(cast(B, obj)>
Args:
obj: value with a union type
rtype: the union type
result_type: result of the operation
process_item: callback to generate op for a single union item (arg is coerced
to union item type)
line: line number
"""
# TODO: Optimize cases where a single operation can handle multiple union items
# (say a method is implemented in a common base class)
fast_items = []
rest_items = []
for item in rtype.items:
if isinstance(item, RInstance):
fast_items.append(item)
else:
# For everything but RInstance we fall back to C API
rest_items.append(item)
exit_block = BasicBlock()
result = Register(result_type)
for i, item in enumerate(fast_items):
more_types = i < len(fast_items) - 1 or rest_items
if more_types:
# We are not at the final item so we need one more branch
op = self.isinstance_native(obj, item.class_ir, line)
true_block, false_block = BasicBlock(), BasicBlock()
self.add_bool_branch(op, true_block, false_block)
self.activate_block(true_block)
coerced = self.coerce(obj, item, line)
temp = process_item(coerced)
temp2 = self.coerce(temp, result_type, line)
self.add(Assign(result, temp2))
self.goto(exit_block)
if more_types:
self.activate_block(false_block)
if rest_items:
# For everything else we use generic operation. Use force=True to drop the
# union type.
coerced = self.coerce(obj, object_rprimitive, line, force=True)
temp = process_item(coerced)
temp2 = self.coerce(temp, result_type, line)
self.add(Assign(result, temp2))
self.goto(exit_block)
self.activate_block(exit_block)
return result
def translate_special_method_call(
self,
base_reg: Value,
name: str,
args: list[Value],
result_type: RType | None,
line: int,
can_borrow: bool = False,
) -> Value | None:
"""Translate a method call which is handled nongenerically.
These are special in the sense that we have code generated specifically for them.
They tend to be method calls which have equivalents in C that are more direct
than calling with the PyObject api.
Return None if no translation found; otherwise return the target register.
"""
primitive_ops_candidates = method_call_ops.get(name, [])
primitive_op = self.matching_primitive_op(
primitive_ops_candidates, [base_reg] + args, line, result_type, can_borrow=can_borrow
)
return primitive_op
def translate_eq_cmp(self, lreg: Value, rreg: Value, expr_op: str, line: int) -> Value | None:
"""Add a equality comparison operation.
Args:
expr_op: either '==' or '!='
"""
ltype = lreg.type
rtype = rreg.type
if not (isinstance(ltype, RInstance) and ltype == rtype):
return None
class_ir = ltype.class_ir
# Check whether any subclasses of the operand redefines __eq__
# or it might be redefined in a Python parent class or by
# dataclasses
cmp_varies_at_runtime = (
not class_ir.is_method_final("__eq__")
or not class_ir.is_method_final("__ne__")
or class_ir.inherits_python
or class_ir.is_augmented
)
if cmp_varies_at_runtime:
# We might need to call left.__eq__(right) or right.__eq__(left)
# depending on which is the more specific type.
return None
if not class_ir.has_method("__eq__"):
# There's no __eq__ defined, so just use object identity.
identity_ref_op = "is" if expr_op == "==" else "is not"
return self.translate_is_op(lreg, rreg, identity_ref_op, line)
return self.gen_method_call(lreg, op_methods[expr_op], [rreg], ltype, line)
def translate_is_op(self, lreg: Value, rreg: Value, expr_op: str, line: int) -> Value:
"""Create equality comparison operation between object identities
Args:
expr_op: either 'is' or 'is not'
"""
op = ComparisonOp.EQ if expr_op == "is" else ComparisonOp.NEQ
lhs = self.coerce(lreg, object_rprimitive, line)
rhs = self.coerce(rreg, object_rprimitive, line)
return self.add(ComparisonOp(lhs, rhs, op, line))
def _create_dict(self, keys: list[Value], values: list[Value], line: int) -> Value:
"""Create a dictionary(possibly empty) using keys and values"""
# keys and values should have the same number of items
size = len(keys)
if size > 0:
size_value: Value = Integer(size, c_pyssize_t_rprimitive)
# merge keys and values
items = [i for t in list(zip(keys, values)) for i in t]
return self.call_c(dict_build_op, [size_value] + items, line)
else:
return self.call_c(dict_new_op, [], line)
def error(self, msg: str, line: int) -> None:
assert self.errors is not None, "cannot generate errors in this compiler phase"
self.errors.error(msg, self.module_path, line)
def num_positional_args(arg_values: list[Value], arg_kinds: list[ArgKind] | None) -> int:
if arg_kinds is None:
return len(arg_values)
num_pos = 0
for kind in arg_kinds:
if kind == ARG_POS:
num_pos += 1
return num_pos
|