1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
"""Arbitrary-precision integer primitive ops.
These mostly operate on (usually) unboxed integers that use a tagged pointer
representation (CPyTagged) and correspond to the Python 'int' type.
See also the documentation for mypyc.rtypes.int_rprimitive.
Use mypyc.ir.ops.IntOp for operations on fixed-width/C integers.
"""
from __future__ import annotations
from mypyc.ir.ops import (
ERR_ALWAYS,
ERR_MAGIC,
ERR_MAGIC_OVERLAPPING,
ERR_NEVER,
PrimitiveDescription,
)
from mypyc.ir.rtypes import (
RType,
bit_rprimitive,
bool_rprimitive,
c_pyssize_t_rprimitive,
float_rprimitive,
int16_rprimitive,
int32_rprimitive,
int64_rprimitive,
int_rprimitive,
object_rprimitive,
str_rprimitive,
void_rtype,
)
from mypyc.primitives.registry import binary_op, custom_op, function_op, load_address_op, unary_op
# Constructors for builtins.int and native int types have the same behavior. In
# interpreted mode, native int types are just aliases to 'int'.
for int_name in (
"builtins.int",
"mypy_extensions.i64",
"mypy_extensions.i32",
"mypy_extensions.i16",
"mypy_extensions.u8",
):
# These int constructors produce object_rprimitives that then need to be unboxed
# I guess unboxing ourselves would save a check and branch though?
# Get the type object for 'builtins.int' or a native int type.
# For ordinary calls to int() we use a load_address to the type.
# Native ints don't have a separate type object -- we just use 'builtins.int'.
load_address_op(name=int_name, type=object_rprimitive, src="PyLong_Type")
# int(float). We could do a bit better directly.
function_op(
name=int_name,
arg_types=[float_rprimitive],
return_type=int_rprimitive,
c_function_name="CPyTagged_FromFloat",
error_kind=ERR_MAGIC,
)
# int(string)
function_op(
name=int_name,
arg_types=[str_rprimitive],
return_type=object_rprimitive,
c_function_name="CPyLong_FromStr",
error_kind=ERR_MAGIC,
)
# int(string, base)
function_op(
name=int_name,
arg_types=[str_rprimitive, int_rprimitive],
return_type=object_rprimitive,
c_function_name="CPyLong_FromStrWithBase",
error_kind=ERR_MAGIC,
)
# str(int)
int_to_str_op = function_op(
name="builtins.str",
arg_types=[int_rprimitive],
return_type=str_rprimitive,
c_function_name="CPyTagged_Str",
error_kind=ERR_MAGIC,
priority=2,
)
# We need a specialization for str on bools also since the int one is wrong...
function_op(
name="builtins.str",
arg_types=[bool_rprimitive],
return_type=str_rprimitive,
c_function_name="CPyBool_Str",
error_kind=ERR_MAGIC,
priority=3,
)
def int_binary_primitive(
op: str, primitive_name: str, return_type: RType = int_rprimitive, error_kind: int = ERR_NEVER
) -> PrimitiveDescription:
return binary_op(
name=op,
arg_types=[int_rprimitive, int_rprimitive],
return_type=return_type,
primitive_name=primitive_name,
error_kind=error_kind,
)
int_eq = int_binary_primitive(op="==", primitive_name="int_eq", return_type=bit_rprimitive)
int_ne = int_binary_primitive(op="!=", primitive_name="int_ne", return_type=bit_rprimitive)
int_lt = int_binary_primitive(op="<", primitive_name="int_lt", return_type=bit_rprimitive)
int_le = int_binary_primitive(op="<=", primitive_name="int_le", return_type=bit_rprimitive)
int_gt = int_binary_primitive(op=">", primitive_name="int_gt", return_type=bit_rprimitive)
int_ge = int_binary_primitive(op=">=", primitive_name="int_ge", return_type=bit_rprimitive)
def int_binary_op(
name: str,
c_function_name: str,
return_type: RType = int_rprimitive,
error_kind: int = ERR_NEVER,
) -> None:
binary_op(
name=name,
arg_types=[int_rprimitive, int_rprimitive],
return_type=return_type,
c_function_name=c_function_name,
error_kind=error_kind,
)
# Binary, unary and augmented assignment operations that operate on CPyTagged ints
# are implemented as C functions.
int_binary_op("+", "CPyTagged_Add")
int_binary_op("-", "CPyTagged_Subtract")
int_binary_op("*", "CPyTagged_Multiply")
int_binary_op("&", "CPyTagged_And")
int_binary_op("|", "CPyTagged_Or")
int_binary_op("^", "CPyTagged_Xor")
# Divide and remainder we honestly propagate errors from because they
# can raise ZeroDivisionError
int_binary_op("//", "CPyTagged_FloorDivide", error_kind=ERR_MAGIC)
int_binary_op("%", "CPyTagged_Remainder", error_kind=ERR_MAGIC)
# Negative shift counts raise an exception
int_binary_op(">>", "CPyTagged_Rshift", error_kind=ERR_MAGIC)
int_binary_op("<<", "CPyTagged_Lshift", error_kind=ERR_MAGIC)
int_binary_op(
"/", "CPyTagged_TrueDivide", return_type=float_rprimitive, error_kind=ERR_MAGIC_OVERLAPPING
)
# This should work because assignment operators are parsed differently
# and the code in irbuild that handles it does the assignment
# regardless of whether or not the operator works in place anyway.
int_binary_op("+=", "CPyTagged_Add")
int_binary_op("-=", "CPyTagged_Subtract")
int_binary_op("*=", "CPyTagged_Multiply")
int_binary_op("&=", "CPyTagged_And")
int_binary_op("|=", "CPyTagged_Or")
int_binary_op("^=", "CPyTagged_Xor")
int_binary_op("//=", "CPyTagged_FloorDivide", error_kind=ERR_MAGIC)
int_binary_op("%=", "CPyTagged_Remainder", error_kind=ERR_MAGIC)
int_binary_op(">>=", "CPyTagged_Rshift", error_kind=ERR_MAGIC)
int_binary_op("<<=", "CPyTagged_Lshift", error_kind=ERR_MAGIC)
def int_unary_op(name: str, c_function_name: str) -> PrimitiveDescription:
return unary_op(
name=name,
arg_type=int_rprimitive,
return_type=int_rprimitive,
c_function_name=c_function_name,
error_kind=ERR_NEVER,
)
int_neg_op = int_unary_op("-", "CPyTagged_Negate")
int_invert_op = int_unary_op("~", "CPyTagged_Invert")
# Primitives related to integer comparison operations:
# Equals operation on two boxed tagged integers
int_equal_ = custom_op(
arg_types=[int_rprimitive, int_rprimitive],
return_type=bit_rprimitive,
c_function_name="CPyTagged_IsEq_",
error_kind=ERR_NEVER,
is_pure=True,
)
# Less than operation on two boxed tagged integers
int_less_than_ = custom_op(
arg_types=[int_rprimitive, int_rprimitive],
return_type=bit_rprimitive,
c_function_name="CPyTagged_IsLt_",
error_kind=ERR_NEVER,
is_pure=True,
)
int64_divide_op = custom_op(
arg_types=[int64_rprimitive, int64_rprimitive],
return_type=int64_rprimitive,
c_function_name="CPyInt64_Divide",
error_kind=ERR_MAGIC_OVERLAPPING,
)
int64_mod_op = custom_op(
arg_types=[int64_rprimitive, int64_rprimitive],
return_type=int64_rprimitive,
c_function_name="CPyInt64_Remainder",
error_kind=ERR_MAGIC_OVERLAPPING,
)
int32_divide_op = custom_op(
arg_types=[int32_rprimitive, int32_rprimitive],
return_type=int32_rprimitive,
c_function_name="CPyInt32_Divide",
error_kind=ERR_MAGIC_OVERLAPPING,
)
int32_mod_op = custom_op(
arg_types=[int32_rprimitive, int32_rprimitive],
return_type=int32_rprimitive,
c_function_name="CPyInt32_Remainder",
error_kind=ERR_MAGIC_OVERLAPPING,
)
int16_divide_op = custom_op(
arg_types=[int16_rprimitive, int16_rprimitive],
return_type=int16_rprimitive,
c_function_name="CPyInt16_Divide",
error_kind=ERR_MAGIC_OVERLAPPING,
)
int16_mod_op = custom_op(
arg_types=[int16_rprimitive, int16_rprimitive],
return_type=int16_rprimitive,
c_function_name="CPyInt16_Remainder",
error_kind=ERR_MAGIC_OVERLAPPING,
)
# Convert tagged int (as PyObject *) to i64
int_to_int64_op = custom_op(
arg_types=[object_rprimitive],
return_type=int64_rprimitive,
c_function_name="CPyLong_AsInt64",
error_kind=ERR_MAGIC_OVERLAPPING,
)
ssize_t_to_int_op = custom_op(
arg_types=[c_pyssize_t_rprimitive],
return_type=int_rprimitive,
c_function_name="CPyTagged_FromSsize_t",
error_kind=ERR_MAGIC,
)
int64_to_int_op = custom_op(
arg_types=[int64_rprimitive],
return_type=int_rprimitive,
c_function_name="CPyTagged_FromInt64",
error_kind=ERR_MAGIC,
)
# Convert tagged int (as PyObject *) to i32
int_to_int32_op = custom_op(
arg_types=[object_rprimitive],
return_type=int32_rprimitive,
c_function_name="CPyLong_AsInt32",
error_kind=ERR_MAGIC_OVERLAPPING,
)
int32_overflow = custom_op(
arg_types=[],
return_type=void_rtype,
c_function_name="CPyInt32_Overflow",
error_kind=ERR_ALWAYS,
)
int16_overflow = custom_op(
arg_types=[],
return_type=void_rtype,
c_function_name="CPyInt16_Overflow",
error_kind=ERR_ALWAYS,
)
uint8_overflow = custom_op(
arg_types=[],
return_type=void_rtype,
c_function_name="CPyUInt8_Overflow",
error_kind=ERR_ALWAYS,
)
|