1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
|
.. _error-code-list:
Error codes enabled by default
==============================
This section documents various errors codes that mypy can generate
with default options. See :ref:`error-codes` for general documentation
about error codes. :ref:`error-codes-optional` documents additional
error codes that you can enable.
.. _code-attr-defined:
Check that attribute exists [attr-defined]
------------------------------------------
Mypy checks that an attribute is defined in the target class or module
when using the dot operator. This applies to both getting and setting
an attribute. New attributes are defined by assignments in the class
body, or assignments to ``self.x`` in methods. These assignments don't
generate ``attr-defined`` errors.
Example:
.. code-block:: python
class Resource:
def __init__(self, name: str) -> None:
self.name = name
r = Resource('x')
print(r.name) # OK
print(r.id) # Error: "Resource" has no attribute "id" [attr-defined]
r.id = 5 # Error: "Resource" has no attribute "id" [attr-defined]
This error code is also generated if an imported name is not defined
in the module in a ``from ... import`` statement (as long as the
target module can be found):
.. code-block:: python
# Error: Module "os" has no attribute "non_existent" [attr-defined]
from os import non_existent
A reference to a missing attribute is given the ``Any`` type. In the
above example, the type of ``non_existent`` will be ``Any``, which can
be important if you silence the error.
.. _code-union-attr:
Check that attribute exists in each union item [union-attr]
-----------------------------------------------------------
If you access the attribute of a value with a union type, mypy checks
that the attribute is defined for *every* type in that
union. Otherwise the operation can fail at runtime. This also applies
to optional types.
Example:
.. code-block:: python
class Cat:
def sleep(self) -> None: ...
def miaow(self) -> None: ...
class Dog:
def sleep(self) -> None: ...
def follow_me(self) -> None: ...
def func(animal: Cat | Dog) -> None:
# OK: 'sleep' is defined for both Cat and Dog
animal.sleep()
# Error: Item "Cat" of "Cat | Dog" has no attribute "follow_me" [union-attr]
animal.follow_me()
You can often work around these errors by using ``assert isinstance(obj, ClassName)``
or ``assert obj is not None`` to tell mypy that you know that the type is more specific
than what mypy thinks.
.. _code-name-defined:
Check that name is defined [name-defined]
-----------------------------------------
Mypy expects that all references to names have a corresponding
definition in an active scope, such as an assignment, function
definition or an import. This can catch missing definitions, missing
imports, and typos.
This example accidentally calls ``sort()`` instead of :py:func:`sorted`:
.. code-block:: python
x = sort([3, 2, 4]) # Error: Name "sort" is not defined [name-defined]
.. _code-used-before-def:
Check that a variable is not used before it's defined [used-before-def]
-----------------------------------------------------------------------
Mypy will generate an error if a name is used before it's defined.
While the name-defined check will catch issues with names that are undefined,
it will not flag if a variable is used and then defined later in the scope.
used-before-def check will catch such cases.
Example:
.. code-block:: python
print(x) # Error: Name "x" is used before definition [used-before-def]
x = 123
.. _code-call-arg:
Check arguments in calls [call-arg]
-----------------------------------
Mypy expects that the number and names of arguments match the called function.
Note that argument type checks have a separate error code ``arg-type``.
Example:
.. code-block:: python
def greet(name: str) -> None:
print('hello', name)
greet('jack') # OK
greet('jill', 'jack') # Error: Too many arguments for "greet" [call-arg]
.. _code-arg-type:
Check argument types [arg-type]
-------------------------------
Mypy checks that argument types in a call match the declared argument
types in the signature of the called function (if one exists).
Example:
.. code-block:: python
def first(x: list[int]) -> int:
return x[0] if x else 0
t = (5, 4)
# Error: Argument 1 to "first" has incompatible type "tuple[int, int]";
# expected "list[int]" [arg-type]
print(first(t))
.. _code-call-overload:
Check calls to overloaded functions [call-overload]
---------------------------------------------------
When you call an overloaded function, mypy checks that at least one of
the signatures of the overload items match the argument types in the
call.
Example:
.. code-block:: python
from typing import overload
@overload
def inc_maybe(x: None) -> None: ...
@overload
def inc_maybe(x: int) -> int: ...
def inc_maybe(x: int | None) -> int | None:
if x is None:
return None
else:
return x + 1
inc_maybe(None) # OK
inc_maybe(5) # OK
# Error: No overload variant of "inc_maybe" matches argument type "float" [call-overload]
inc_maybe(1.2)
.. _code-valid-type:
Check validity of types [valid-type]
------------------------------------
Mypy checks that each type annotation and any expression that
represents a type is a valid type. Examples of valid types include
classes, union types, callable types, type aliases, and literal types.
Examples of invalid types include bare integer literals, functions,
variables, and modules.
This example incorrectly uses the function ``log`` as a type:
.. code-block:: python
def log(x: object) -> None:
print('log:', repr(x))
# Error: Function "t.log" is not valid as a type [valid-type]
def log_all(objs: list[object], f: log) -> None:
for x in objs:
f(x)
You can use :py:class:`~collections.abc.Callable` as the type for callable objects:
.. code-block:: python
from collections.abc import Callable
# OK
def log_all(objs: list[object], f: Callable[[object], None]) -> None:
for x in objs:
f(x)
.. _code-var-annotated:
Require annotation if variable type is unclear [var-annotated]
--------------------------------------------------------------
In some cases mypy can't infer the type of a variable without an
explicit annotation. Mypy treats this as an error. This typically
happens when you initialize a variable with an empty collection or
``None``. If mypy can't infer the collection item type, mypy replaces
any parts of the type it couldn't infer with ``Any`` and generates an
error.
Example with an error:
.. code-block:: python
class Bundle:
def __init__(self) -> None:
# Error: Need type annotation for "items"
# (hint: "items: list[<type>] = ...") [var-annotated]
self.items = []
reveal_type(Bundle().items) # list[Any]
To address this, we add an explicit annotation:
.. code-block:: python
class Bundle:
def __init__(self) -> None:
self.items: list[str] = [] # OK
reveal_type(Bundle().items) # list[str]
.. _code-override:
Check validity of overrides [override]
--------------------------------------
Mypy checks that an overridden method or attribute is compatible with
the base class. A method in a subclass must accept all arguments
that the base class method accepts, and the return type must conform
to the return type in the base class (Liskov substitution principle).
Argument types can be more general is a subclass (i.e., they can vary
contravariantly). The return type can be narrowed in a subclass
(i.e., it can vary covariantly). It's okay to define additional
arguments in a subclass method, as long all extra arguments have default
values or can be left out (``*args``, for example).
Example:
.. code-block:: python
class Base:
def method(self,
arg: int) -> int | None:
...
class Derived(Base):
def method(self,
arg: int | str) -> int: # OK
...
class DerivedBad(Base):
# Error: Argument 1 of "method" is incompatible with "Base" [override]
def method(self,
arg: bool) -> int:
...
.. _code-return:
Check that function returns a value [return]
--------------------------------------------
If a function has a non-``None`` return type, mypy expects that the
function always explicitly returns a value (or raises an exception).
The function should not fall off the end of the function, since this
is often a bug.
Example:
.. code-block:: python
# Error: Missing return statement [return]
def show(x: int) -> int:
print(x)
# Error: Missing return statement [return]
def pred1(x: int) -> int:
if x > 0:
return x - 1
# OK
def pred2(x: int) -> int:
if x > 0:
return x - 1
else:
raise ValueError('not defined for zero')
.. _code-empty-body:
Check that functions don't have empty bodies outside stubs [empty-body]
-----------------------------------------------------------------------
This error code is similar to the ``[return]`` code but is emitted specifically
for functions and methods with empty bodies (if they are annotated with
non-trivial return type). Such a distinction exists because in some contexts
an empty body can be valid, for example for an abstract method or in a stub
file. Also old versions of mypy used to unconditionally allow functions with
empty bodies, so having a dedicated error code simplifies cross-version
compatibility.
Note that empty bodies are allowed for methods in *protocols*, and such methods
are considered implicitly abstract:
.. code-block:: python
from abc import abstractmethod
from typing import Protocol
class RegularABC:
@abstractmethod
def foo(self) -> int:
pass # OK
def bar(self) -> int:
pass # Error: Missing return statement [empty-body]
class Proto(Protocol):
def bar(self) -> int:
pass # OK
.. _code-return-value:
Check that return value is compatible [return-value]
----------------------------------------------------
Mypy checks that the returned value is compatible with the type
signature of the function.
Example:
.. code-block:: python
def func(x: int) -> str:
# Error: Incompatible return value type (got "int", expected "str") [return-value]
return x + 1
.. _code-assignment:
Check types in assignment statement [assignment]
------------------------------------------------
Mypy checks that the assigned expression is compatible with the
assignment target (or targets).
Example:
.. code-block:: python
class Resource:
def __init__(self, name: str) -> None:
self.name = name
r = Resource('A')
r.name = 'B' # OK
# Error: Incompatible types in assignment (expression has type "int",
# variable has type "str") [assignment]
r.name = 5
.. _code-method-assign:
Check that assignment target is not a method [method-assign]
------------------------------------------------------------
In general, assigning to a method on class object or instance (a.k.a.
monkey-patching) is ambiguous in terms of types, since Python's static type
system cannot express the difference between bound and unbound callable types.
Consider this example:
.. code-block:: python
class A:
def f(self) -> None: pass
def g(self) -> None: pass
def h(self: A) -> None: pass
A.f = h # Type of h is Callable[[A], None]
A().f() # This works
A.f = A().g # Type of A().g is Callable[[], None]
A().f() # ...but this also works at runtime
To prevent the ambiguity, mypy will flag both assignments by default. If this
error code is disabled, mypy will treat the assigned value in all method assignments as unbound,
so only the second assignment will still generate an error.
.. note::
This error code is a subcode of the more general ``[assignment]`` code.
.. _code-type-var:
Check type variable values [type-var]
-------------------------------------
Mypy checks that value of a type variable is compatible with a value
restriction or the upper bound type.
Example (Python 3.12 syntax):
.. code-block:: python
def add[T1: (int, float)](x: T1, y: T1) -> T1:
return x + y
add(4, 5.5) # OK
# Error: Value of type variable "T1" of "add" cannot be "str" [type-var]
add('x', 'y')
.. _code-operator:
Check uses of various operators [operator]
------------------------------------------
Mypy checks that operands support a binary or unary operation, such as
``+`` or ``~``. Indexing operations are so common that they have their
own error code ``index`` (see below).
Example:
.. code-block:: python
# Error: Unsupported operand types for + ("int" and "str") [operator]
1 + 'x'
.. _code-index:
Check indexing operations [index]
---------------------------------
Mypy checks that the indexed value in indexing operation such as
``x[y]`` supports indexing, and that the index expression has a valid
type.
Example:
.. code-block:: python
a = {'x': 1, 'y': 2}
a['x'] # OK
# Error: Invalid index type "int" for "dict[str, int]"; expected type "str" [index]
print(a[1])
# Error: Invalid index type "bytes" for "dict[str, int]"; expected type "str" [index]
a[b'x'] = 4
.. _code-list-item:
Check list items [list-item]
----------------------------
When constructing a list using ``[item, ...]``, mypy checks that each item
is compatible with the list type that is inferred from the surrounding
context.
Example:
.. code-block:: python
# Error: List item 0 has incompatible type "int"; expected "str" [list-item]
a: list[str] = [0]
.. _code-dict-item:
Check dict items [dict-item]
----------------------------
When constructing a dictionary using ``{key: value, ...}`` or ``dict(key=value, ...)``,
mypy checks that each key and value is compatible with the dictionary type that is
inferred from the surrounding context.
Example:
.. code-block:: python
# Error: Dict entry 0 has incompatible type "str": "str"; expected "str": "int" [dict-item]
d: dict[str, int] = {'key': 'value'}
.. _code-typeddict-item:
Check TypedDict items [typeddict-item]
--------------------------------------
When constructing a TypedDict object, mypy checks that each key and value is compatible
with the TypedDict type that is inferred from the surrounding context.
When getting a TypedDict item, mypy checks that the key
exists. When assigning to a TypedDict, mypy checks that both the
key and the value are valid.
Example:
.. code-block:: python
from typing import TypedDict
class Point(TypedDict):
x: int
y: int
# Error: Incompatible types (expression has type "float",
# TypedDict item "x" has type "int") [typeddict-item]
p: Point = {'x': 1.2, 'y': 4}
.. _code-typeddict-unknown-key:
Check TypedDict Keys [typeddict-unknown-key]
--------------------------------------------
When constructing a TypedDict object, mypy checks whether the
definition contains unknown keys, to catch invalid keys and
misspellings. On the other hand, mypy will not generate an error when
a previously constructed TypedDict value with extra keys is passed
to a function as an argument, since TypedDict values support
structural subtyping ("static duck typing") and the keys are assumed
to have been validated at the point of construction. Example:
.. code-block:: python
from typing import TypedDict
class Point(TypedDict):
x: int
y: int
class Point3D(Point):
z: int
def add_x_coordinates(a: Point, b: Point) -> int:
return a["x"] + b["x"]
a: Point = {"x": 1, "y": 4}
b: Point3D = {"x": 2, "y": 5, "z": 6}
add_x_coordinates(a, b) # OK
# Error: Extra key "z" for TypedDict "Point" [typeddict-unknown-key]
add_x_coordinates(a, {"x": 1, "y": 4, "z": 5})
Setting a TypedDict item using an unknown key will also generate this
error, since it could be a misspelling:
.. code-block:: python
a: Point = {"x": 1, "y": 2}
# Error: Extra key "z" for TypedDict "Point" [typeddict-unknown-key]
a["z"] = 3
Reading an unknown key will generate the more general (and serious)
``typeddict-item`` error, which is likely to result in an exception at
runtime:
.. code-block:: python
a: Point = {"x": 1, "y": 2}
# Error: TypedDict "Point" has no key "z" [typeddict-item]
_ = a["z"]
.. note::
This error code is a subcode of the wider ``[typeddict-item]`` code.
.. _code-has-type:
Check that type of target is known [has-type]
---------------------------------------------
Mypy sometimes generates an error when it hasn't inferred any type for
a variable being referenced. This can happen for references to
variables that are initialized later in the source file, and for
references across modules that form an import cycle. When this
happens, the reference gets an implicit ``Any`` type.
In this example the definitions of ``x`` and ``y`` are circular:
.. code-block:: python
class Problem:
def set_x(self) -> None:
# Error: Cannot determine type of "y" [has-type]
self.x = self.y
def set_y(self) -> None:
self.y = self.x
To work around this error, you can add an explicit type annotation to
the target variable or attribute. Sometimes you can also reorganize
the code so that the definition of the variable is placed earlier than
the reference to the variable in a source file. Untangling cyclic
imports may also help.
We add an explicit annotation to the ``y`` attribute to work around
the issue:
.. code-block:: python
class Problem:
def set_x(self) -> None:
self.x = self.y # OK
def set_y(self) -> None:
self.y: int = self.x # Added annotation here
.. _code-import:
Check for an issue with imports [import]
----------------------------------------
Mypy generates an error if it can't resolve an `import` statement.
This is a parent error code of `import-not-found` and `import-untyped`
See :ref:`ignore-missing-imports` for how to work around these errors.
.. _code-import-not-found:
Check that import target can be found [import-not-found]
--------------------------------------------------------
Mypy generates an error if it can't find the source code or a stub file
for an imported module.
Example:
.. code-block:: python
# Error: Cannot find implementation or library stub for module named "m0dule_with_typo" [import-not-found]
import m0dule_with_typo
See :ref:`ignore-missing-imports` for how to work around these errors.
.. _code-import-untyped:
Check that import target can be found [import-untyped]
--------------------------------------------------------
Mypy generates an error if it can find the source code for an imported module,
but that module does not provide type annotations (via :ref:`PEP 561 <installed-packages>`).
Example:
.. code-block:: python
# Error: Library stubs not installed for "bs4" [import-untyped]
import bs4
# Error: Skipping analyzing "no_py_typed": module is installed, but missing library stubs or py.typed marker [import-untyped]
import no_py_typed
In some cases, these errors can be fixed by installing an appropriate
stub package. See :ref:`ignore-missing-imports` for more details.
.. _code-no-redef:
Check that each name is defined once [no-redef]
-----------------------------------------------
Mypy may generate an error if you have multiple definitions for a name
in the same namespace. The reason is that this is often an error, as
the second definition may overwrite the first one. Also, mypy often
can't be able to determine whether references point to the first or
the second definition, which would compromise type checking.
If you silence this error, all references to the defined name refer to
the *first* definition.
Example:
.. code-block:: python
class A:
def __init__(self, x: int) -> None: ...
class A: # Error: Name "A" already defined on line 1 [no-redef]
def __init__(self, x: str) -> None: ...
# Error: Argument 1 to "A" has incompatible type "str"; expected "int"
# (the first definition wins!)
A('x')
.. _code-func-returns-value:
Check that called function returns a value [func-returns-value]
---------------------------------------------------------------
Mypy reports an error if you call a function with a ``None``
return type and don't ignore the return value, as this is
usually (but not always) a programming error.
In this example, the ``if f()`` check is always false since ``f``
returns ``None``:
.. code-block:: python
def f() -> None:
...
# OK: we don't do anything with the return value
f()
# Error: "f" does not return a value (it only ever returns None) [func-returns-value]
if f():
print("not false")
.. _code-abstract:
Check instantiation of abstract classes [abstract]
--------------------------------------------------
Mypy generates an error if you try to instantiate an abstract base
class (ABC). An abstract base class is a class with at least one
abstract method or attribute. (See also :py:mod:`abc` module documentation)
Sometimes a class is made accidentally abstract, often due to an
unimplemented abstract method. In a case like this you need to provide
an implementation for the method to make the class concrete
(non-abstract).
Example:
.. code-block:: python
from abc import ABCMeta, abstractmethod
class Persistent(metaclass=ABCMeta):
@abstractmethod
def save(self) -> None: ...
class Thing(Persistent):
def __init__(self) -> None:
...
... # No "save" method
# Error: Cannot instantiate abstract class "Thing" with abstract attribute "save" [abstract]
t = Thing()
.. _code-type-abstract:
Safe handling of abstract type object types [type-abstract]
-----------------------------------------------------------
Mypy always allows instantiating (calling) type objects typed as ``type[t]``,
even if it is not known that ``t`` is non-abstract, since it is a common
pattern to create functions that act as object factories (custom constructors).
Therefore, to prevent issues described in the above section, when an abstract
type object is passed where ``type[t]`` is expected, mypy will give an error.
Example (Python 3.12 syntax):
.. code-block:: python
from abc import ABCMeta, abstractmethod
class Config(metaclass=ABCMeta):
@abstractmethod
def get_value(self, attr: str) -> str: ...
def make_many[T](typ: type[T], n: int) -> list[T]:
return [typ() for _ in range(n)] # This will raise if typ is abstract
# Error: Only concrete class can be given where "type[Config]" is expected [type-abstract]
make_many(Config, 5)
.. _code-safe-super:
Check that call to an abstract method via super is valid [safe-super]
---------------------------------------------------------------------
Abstract methods often don't have any default implementation, i.e. their
bodies are just empty. Calling such methods in subclasses via ``super()``
will cause runtime errors, so mypy prevents you from doing so:
.. code-block:: python
from abc import abstractmethod
class Base:
@abstractmethod
def foo(self) -> int: ...
class Sub(Base):
def foo(self) -> int:
return super().foo() + 1 # error: Call to abstract method "foo" of "Base" with
# trivial body via super() is unsafe [safe-super]
Sub().foo() # This will crash at runtime.
Mypy considers the following as trivial bodies: a ``pass`` statement, a literal
ellipsis ``...``, a docstring, and a ``raise NotImplementedError`` statement.
.. _code-valid-newtype:
Check the target of NewType [valid-newtype]
-------------------------------------------
The target of a :py:class:`~typing.NewType` definition must be a class type. It can't
be a union type, ``Any``, or various other special types.
You can also get this error if the target has been imported from a
module whose source mypy cannot find, since any such definitions are
treated by mypy as values with ``Any`` types. Example:
.. code-block:: python
from typing import NewType
# The source for "acme" is not available for mypy
from acme import Entity # type: ignore
# Error: Argument 2 to NewType(...) must be subclassable (got "Any") [valid-newtype]
UserEntity = NewType('UserEntity', Entity)
To work around the issue, you can either give mypy access to the sources
for ``acme`` or create a stub file for the module. See :ref:`ignore-missing-imports`
for more information.
.. _code-exit-return:
Check the return type of __exit__ [exit-return]
-----------------------------------------------
If mypy can determine that :py:meth:`__exit__ <object.__exit__>` always returns ``False``, mypy
checks that the return type is *not* ``bool``. The boolean value of
the return type affects which lines mypy thinks are reachable after a
``with`` statement, since any :py:meth:`__exit__ <object.__exit__>` method that can return
``True`` may swallow exceptions. An imprecise return type can result
in mysterious errors reported near ``with`` statements.
To fix this, use either ``typing.Literal[False]`` or
``None`` as the return type. Returning ``None`` is equivalent to
returning ``False`` in this context, since both are treated as false
values.
Example:
.. code-block:: python
class MyContext:
...
def __exit__(self, exc, value, tb) -> bool: # Error
print('exit')
return False
This produces the following output from mypy:
.. code-block:: text
example.py:3: error: "bool" is invalid as return type for "__exit__" that always returns False
example.py:3: note: Use "typing_extensions.Literal[False]" as the return type or change it to
"None"
example.py:3: note: If return type of "__exit__" implies that it may return True, the context
manager may swallow exceptions
You can use ``Literal[False]`` to fix the error:
.. code-block:: python
from typing import Literal
class MyContext:
...
def __exit__(self, exc, value, tb) -> Literal[False]: # OK
print('exit')
return False
You can also use ``None``:
.. code-block:: python
class MyContext:
...
def __exit__(self, exc, value, tb) -> None: # Also OK
print('exit')
.. _code-name-match:
Check that naming is consistent [name-match]
--------------------------------------------
The definition of a named tuple or a TypedDict must be named
consistently when using the call-based syntax. Example:
.. code-block:: python
from typing import NamedTuple
# Error: First argument to namedtuple() should be "Point2D", not "Point"
Point2D = NamedTuple("Point", [("x", int), ("y", int)])
.. _code-literal-required:
Check that literal is used where expected [literal-required]
------------------------------------------------------------
There are some places where only a (string) literal value is expected for
the purposes of static type checking, for example a ``TypedDict`` key, or
a ``__match_args__`` item. Providing a ``str``-valued variable in such contexts
will result in an error. Note that in many cases you can also use ``Final``
or ``Literal`` variables. Example:
.. code-block:: python
from typing import Final, Literal, TypedDict
class Point(TypedDict):
x: int
y: int
def test(p: Point) -> None:
X: Final = "x"
p[X] # OK
Y: Literal["y"] = "y"
p[Y] # OK
key = "x" # Inferred type of key is `str`
# Error: TypedDict key must be a string literal;
# expected one of ("x", "y") [literal-required]
p[key]
.. _code-no-overload-impl:
Check that overloaded functions have an implementation [no-overload-impl]
-------------------------------------------------------------------------
Overloaded functions outside of stub files must be followed by a non overloaded
implementation.
.. code-block:: python
from typing import overload
@overload
def func(value: int) -> int:
...
@overload
def func(value: str) -> str:
...
# presence of required function below is checked
def func(value):
pass # actual implementation
.. _code-unused-coroutine:
Check that coroutine return value is used [unused-coroutine]
------------------------------------------------------------
Mypy ensures that return values of async def functions are not
ignored, as this is usually a programming error, as the coroutine
won't be executed at the call site.
.. code-block:: python
async def f() -> None:
...
async def g() -> None:
f() # Error: missing await
await f() # OK
You can work around this error by assigning the result to a temporary,
otherwise unused variable:
.. code-block:: python
_ = f() # No error
.. _code-top-level-await:
Warn about top level await expressions [top-level-await]
--------------------------------------------------------
This error code is separate from the general ``[syntax]`` errors, because in
some environments (e.g. IPython) a top level ``await`` is allowed. In such
environments a user may want to use ``--disable-error-code=top-level-await``,
that allows to still have errors for other improper uses of ``await``, for
example:
.. code-block:: python
async def f() -> None:
...
top = await f() # Error: "await" outside function [top-level-await]
.. _code-await-not-async:
Warn about await expressions used outside of coroutines [await-not-async]
-------------------------------------------------------------------------
``await`` must be used inside a coroutine.
.. code-block:: python
async def f() -> None:
...
def g() -> None:
await f() # Error: "await" outside coroutine ("async def") [await-not-async]
.. _code-assert-type:
Check types in assert_type [assert-type]
----------------------------------------
The inferred type for an expression passed to ``assert_type`` must match
the provided type.
.. code-block:: python
from typing_extensions import assert_type
assert_type([1], list[int]) # OK
assert_type([1], list[str]) # Error
.. _code-truthy-function:
Check that function isn't used in boolean context [truthy-function]
-------------------------------------------------------------------
Functions will always evaluate to true in boolean contexts.
.. code-block:: python
def f():
...
if f: # Error: Function "Callable[[], Any]" could always be true in boolean context [truthy-function]
pass
.. _code-str-format:
Check that string formatting/interpolation is type-safe [str-format]
--------------------------------------------------------------------
Mypy will check that f-strings, ``str.format()`` calls, and ``%`` interpolations
are valid (when corresponding template is a literal string). This includes
checking number and types of replacements, for example:
.. code-block:: python
# Error: Cannot find replacement for positional format specifier 1 [str-format]
"{} and {}".format("spam")
"{} and {}".format("spam", "eggs") # OK
# Error: Not all arguments converted during string formatting [str-format]
"{} and {}".format("spam", "eggs", "cheese")
# Error: Incompatible types in string interpolation
# (expression has type "float", placeholder has type "int") [str-format]
"{:d}".format(3.14)
.. _code-str-bytes-safe:
Check for implicit bytes coercions [str-bytes-safe]
-------------------------------------------------------------------
Warn about cases where a bytes object may be converted to a string in an unexpected manner.
.. code-block:: python
b = b"abc"
# Error: If x = b'abc' then f"{x}" or "{}".format(x) produces "b'abc'", not "abc".
# If this is desired behavior, use f"{x!r}" or "{!r}".format(x).
# Otherwise, decode the bytes [str-bytes-safe]
print(f"The alphabet starts with {b}")
# Okay
print(f"The alphabet starts with {b!r}") # The alphabet starts with b'abc'
print(f"The alphabet starts with {b.decode('utf-8')}") # The alphabet starts with abc
.. _code-overload-overlap:
Check that overloaded functions don't overlap [overload-overlap]
----------------------------------------------------------------
Warn if multiple ``@overload`` variants overlap in potentially unsafe ways.
This guards against the following situation:
.. code-block:: python
from typing import overload
class A: ...
class B(A): ...
@overload
def foo(x: B) -> int: ... # Error: Overloaded function signatures 1 and 2 overlap with incompatible return types [overload-overlap]
@overload
def foo(x: A) -> str: ...
def foo(x): ...
def takes_a(a: A) -> str:
return foo(a)
a: A = B()
value = takes_a(a)
# mypy will think that value is a str, but it could actually be an int
reveal_type(value) # Revealed type is "builtins.str"
Note that in cases where you ignore this error, mypy will usually still infer the
types you expect.
See :ref:`overloading <function-overloading>` for more explanation.
.. _code-overload-cannot-match:
Check for overload signatures that cannot match [overload-cannot-match]
--------------------------------------------------------------------------
Warn if an ``@overload`` variant can never be matched, because an earlier
overload has a wider signature. For example, this can happen if the two
overloads accept the same parameters and each parameter on the first overload
has the same type or a wider type than the corresponding parameter on the second
overload.
Example:
.. code-block:: python
from typing import overload, Union
@overload
def process(response1: object, response2: object) -> object:
...
@overload
def process(response1: int, response2: int) -> int: # E: Overloaded function signature 2 will never be matched: signature 1's parameter type(s) are the same or broader [overload-cannot-match]
...
def process(response1: object, response2: object) -> object:
return response1 + response2
.. _code-annotation-unchecked:
Notify about an annotation in an unchecked function [annotation-unchecked]
--------------------------------------------------------------------------
Sometimes a user may accidentally omit an annotation for a function, and mypy
will not check the body of this function (unless one uses
:option:`--check-untyped-defs <mypy --check-untyped-defs>` or
:option:`--disallow-untyped-defs <mypy --disallow-untyped-defs>`). To avoid
such situations go unnoticed, mypy will show a note, if there are any type
annotations in an unchecked function:
.. code-block:: python
def test_assignment(): # "-> None" return annotation is missing
# Note: By default the bodies of untyped functions are not checked,
# consider using --check-untyped-defs [annotation-unchecked]
x: int = "no way"
Note that mypy will still exit with return code ``0``, since such behaviour is
specified by :pep:`484`.
.. _code-prop-decorator:
Decorator preceding property not supported [prop-decorator]
-----------------------------------------------------------
Mypy does not yet support analysis of decorators that precede the property
decorator. If the decorator does not preserve the declared type of the property,
mypy will not infer the correct type for the declaration. If the decorator cannot
be moved after the ``@property`` decorator, then you must use a type ignore
comment:
.. code-block:: python
class MyClass:
@special # type: ignore[prop-decorator]
@property
def magic(self) -> str:
return "xyzzy"
.. note::
For backward compatibility, this error code is a subcode of the generic ``[misc]`` code.
.. _code-syntax:
Report syntax errors [syntax]
-----------------------------
If the code being checked is not syntactically valid, mypy issues a
syntax error. Most, but not all, syntax errors are *blocking errors*:
they can't be ignored with a ``# type: ignore`` comment.
.. _code-typeddict-readonly-mutated:
ReadOnly key of a TypedDict is mutated [typeddict-readonly-mutated]
-------------------------------------------------------------------
Consider this example:
.. code-block:: python
from datetime import datetime
from typing import TypedDict
from typing_extensions import ReadOnly
class User(TypedDict):
username: ReadOnly[str]
last_active: datetime
user: User = {'username': 'foobar', 'last_active': datetime.now()}
user['last_active'] = datetime.now() # ok
user['username'] = 'other' # error: ReadOnly TypedDict key "key" TypedDict is mutated [typeddict-readonly-mutated]
`PEP 705 <https://peps.python.org/pep-0705>`_ specifies
how ``ReadOnly`` special form works for ``TypedDict`` objects.
.. _code-narrowed-type-not-subtype:
Check that ``TypeIs`` narrows types [narrowed-type-not-subtype]
---------------------------------------------------------------
:pep:`742` requires that when ``TypeIs`` is used, the narrowed
type must be a subtype of the original type::
from typing_extensions import TypeIs
def f(x: int) -> TypeIs[str]: # Error, str is not a subtype of int
...
def g(x: object) -> TypeIs[str]: # OK
...
.. _code-misc:
Miscellaneous checks [misc]
---------------------------
Mypy performs numerous other, less commonly failing checks that don't
have specific error codes. These use the ``misc`` error code. Other
than being used for multiple unrelated errors, the ``misc`` error code
is not special. For example, you can ignore all errors in this
category by using ``# type: ignore[misc]`` comment. Since these errors
are not expected to be common, it's unlikely that you'll see two
*different* errors with the ``misc`` code on a single line -- though
this can certainly happen once in a while.
.. note::
Future mypy versions will likely add new error codes for some errors
that currently use the ``misc`` error code.
|