File: generics.rst

package info (click to toggle)
mypy 1.17.1-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 21,048 kB
  • sloc: python: 108,159; cpp: 11,380; ansic: 7,255; makefile: 247; sh: 27
file content (1437 lines) | stat: -rw-r--r-- 46,018 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
Generics
========

This section explains how you can define your own generic classes that take
one or more type arguments, similar to built-in types such as ``list[T]``.
User-defined generics are a moderately advanced feature and you can get far
without ever using them -- feel free to skip this section and come back later.

.. _generic-classes:

Defining generic classes
************************

The built-in collection classes are generic classes. Generic types
accept one or more type arguments within ``[...]``, which can be
arbitrary types. For example, the type ``dict[int, str]`` has the
type arguments ``int`` and ``str``, and ``list[int]`` has the type
argument ``int``.

Programs can also define new generic classes. Here is a very simple
generic class that represents a stack (using the syntax introduced in
Python 3.12):

.. code-block:: python

   class Stack[T]:
       def __init__(self) -> None:
           # Create an empty list with items of type T
           self.items: list[T] = []

       def push(self, item: T) -> None:
           self.items.append(item)

       def pop(self) -> T:
           return self.items.pop()

       def empty(self) -> bool:
           return not self.items

There are two syntax variants for defining generic classes in Python.
Python 3.12 introduced a
`new dedicated syntax <https://docs.python.org/3/whatsnew/3.12.html#pep-695-type-parameter-syntax>`_
for defining generic classes (and also functions and type aliases, which
we will discuss later). The above example used the new syntax. Most examples are
given using both the new and the old (or legacy) syntax variants.
Unless mentioned otherwise, they work the same -- but the new syntax
is more readable and more convenient.

Here is the same example using the old syntax (required for Python 3.11
and earlier, but also supported on newer Python versions):

.. code-block:: python

   from typing import TypeVar, Generic

   T = TypeVar('T')  # Define type variable "T"

   class Stack(Generic[T]):
       def __init__(self) -> None:
           # Create an empty list with items of type T
           self.items: list[T] = []

       def push(self, item: T) -> None:
           self.items.append(item)

       def pop(self) -> T:
           return self.items.pop()

       def empty(self) -> bool:
           return not self.items

.. note::

    There are currently no plans to deprecate the legacy syntax.
    You can freely mix code using the new and old syntax variants,
    even within a single file (but *not* within a single class).

The ``Stack`` class can be used to represent a stack of any type:
``Stack[int]``, ``Stack[tuple[int, str]]``, etc. You can think of
``Stack[int]`` as referring to the definition of ``Stack`` above,
but with all instances of ``T`` replaced with ``int``.

Using ``Stack`` is similar to built-in container types:

.. code-block:: python

   # Construct an empty Stack[int] instance
   stack = Stack[int]()
   stack.push(2)
   stack.pop()

   # error: Argument 1 to "push" of "Stack" has incompatible type "str"; expected "int"
   stack.push('x')

   stack2: Stack[str] = Stack()
   stack2.push('x')

Construction of instances of generic types is type checked (Python 3.12 syntax):

.. code-block:: python

   class Box[T]:
       def __init__(self, content: T) -> None:
           self.content = content

   Box(1)       # OK, inferred type is Box[int]
   Box[int](1)  # Also OK

   # error: Argument 1 to "Box" has incompatible type "str"; expected "int"
   Box[int]('some string')

Here is the definition of ``Box`` using the legacy syntax (Python 3.11 and earlier):

.. code-block:: python

   from typing import TypeVar, Generic

   T = TypeVar('T')

   class Box(Generic[T]):
       def __init__(self, content: T) -> None:
           self.content = content

.. note::

    Before moving on, let's clarify some terminology.
    The name ``T`` in ``class Stack[T]`` or ``class Stack(Generic[T])``
    declares a *type parameter* ``T`` (of class ``Stack``).
    ``T`` is also called a *type variable*, especially in a type annotation,
    such as in the signature of ``push`` above.
    When the type ``Stack[...]`` is used in a type annotation, the type
    within square brackets is called a *type argument*.
    This is similar to the distinction between function parameters and arguments.

.. _generic-subclasses:

Defining subclasses of generic classes
**************************************

User-defined generic classes and generic classes defined in :py:mod:`typing`
can be used as a base class for another class (generic or non-generic). For
example (Python 3.12 syntax):

.. code-block:: python

   from typing import Mapping, Iterator

   # This is a generic subclass of Mapping
   class MyMap[KT, VT](Mapping[KT, VT]):
       def __getitem__(self, k: KT) -> VT: ...
       def __iter__(self) -> Iterator[KT]: ...
       def __len__(self) -> int: ...

   items: MyMap[str, int]  # OK

   # This is a non-generic subclass of dict
   class StrDict(dict[str, str]):
       def __str__(self) -> str:
           return f'StrDict({super().__str__()})'

   data: StrDict[int, int]  # Error! StrDict is not generic
   data2: StrDict  # OK

   # This is a user-defined generic class
   class Receiver[T]:
       def accept(self, value: T) -> None: ...

   # This is a generic subclass of Receiver
   class AdvancedReceiver[T](Receiver[T]): ...

Here is the above example using the legacy syntax (Python 3.11 and earlier):

.. code-block:: python

   from typing import Generic, TypeVar, Mapping, Iterator

   KT = TypeVar('KT')
   VT = TypeVar('VT')

   # This is a generic subclass of Mapping
   class MyMap(Mapping[KT, VT]):
       def __getitem__(self, k: KT) -> VT: ...
       def __iter__(self) -> Iterator[KT]: ...
       def __len__(self) -> int: ...

   items: MyMap[str, int]  # OK

   # This is a non-generic subclass of dict
   class StrDict(dict[str, str]):
       def __str__(self) -> str:
           return f'StrDict({super().__str__()})'

   data: StrDict[int, int]  # Error! StrDict is not generic
   data2: StrDict  # OK

   # This is a user-defined generic class
   class Receiver(Generic[T]):
       def accept(self, value: T) -> None: ...

   # This is a generic subclass of Receiver
   class AdvancedReceiver(Receiver[T]): ...

.. note::

    You have to add an explicit :py:class:`~collections.abc.Mapping` base class
    if you want mypy to consider a user-defined class as a mapping (and
    :py:class:`~collections.abc.Sequence` for sequences, etc.). This is because
    mypy doesn't use *structural subtyping* for these ABCs, unlike simpler protocols
    like :py:class:`~collections.abc.Iterable`, which use
    :ref:`structural subtyping <protocol-types>`.

When using the legacy syntax, :py:class:`Generic <typing.Generic>` can be omitted
from bases if there are
other base classes that include type variables, such as ``Mapping[KT, VT]``
in the above example. If you include ``Generic[...]`` in bases, then
it should list all type variables present in other bases (or more,
if needed). The order of type parameters is defined by the following
rules:

* If ``Generic[...]`` is present, then the order of parameters is
  always determined by their order in ``Generic[...]``.
* If there are no ``Generic[...]`` in bases, then all type parameters
  are collected in the lexicographic order (i.e. by first appearance).

Example:

.. code-block:: python

   from typing import Generic, TypeVar, Any

   T = TypeVar('T')
   S = TypeVar('S')
   U = TypeVar('U')

   class One(Generic[T]): ...
   class Another(Generic[T]): ...

   class First(One[T], Another[S]): ...
   class Second(One[T], Another[S], Generic[S, U, T]): ...

   x: First[int, str]        # Here T is bound to int, S is bound to str
   y: Second[int, str, Any]  # Here T is Any, S is int, and U is str

When using the Python 3.12 syntax, all type parameters must always be
explicitly defined immediately after the class name within ``[...]``, and the
``Generic[...]`` base class is never used.

.. _generic-functions:

Generic functions
*****************

Functions can also be generic, i.e. they can have type parameters (Python 3.12 syntax):

.. code-block:: python

   from collections.abc import Sequence

   # A generic function!
   def first[T](seq: Sequence[T]) -> T:
       return seq[0]

Here is the same example using the legacy syntax (Python 3.11 and earlier):

.. code-block:: python

   from typing import TypeVar, Sequence

   T = TypeVar('T')

   # A generic function!
   def first(seq: Sequence[T]) -> T:
       return seq[0]

As with generic classes, the type parameter ``T`` can be replaced with any
type. That means ``first`` can be passed an argument with any sequence type,
and the return type is derived from the sequence item type. Example:

.. code-block:: python

   reveal_type(first([1, 2, 3]))   # Revealed type is "builtins.int"
   reveal_type(first(('a', 'b')))  # Revealed type is "builtins.str"

When using the legacy syntax, a single definition of a type variable
(such as ``T`` above) can be used in multiple generic functions or
classes. In this example we use the same type variable in two generic
functions to declare type parameters:

.. code-block:: python

   from typing import TypeVar, Sequence

   T = TypeVar('T')      # Define type variable

   def first(seq: Sequence[T]) -> T:
       return seq[0]

   def last(seq: Sequence[T]) -> T:
       return seq[-1]

Since the Python 3.12 syntax is more concise, it doesn't need (or have)
an equivalent way of sharing type parameter definitions.

A variable cannot have a type variable in its type unless the type
variable is bound in a containing generic class or function.

When calling a generic function, you can't explicitly pass the values of
type parameters as type arguments. The values of type parameters are always
inferred by mypy. This is not valid:

.. code-block:: python

    first[int]([1, 2])  # Error: can't use [...] with generic function

If you really need this, you can define a generic class with a ``__call__``
method.

.. _type-variable-upper-bound:

Type variables with upper bounds
********************************

A type variable can also be restricted to having values that are
subtypes of a specific type. This type is called the upper bound of
the type variable, and it is specified using ``T: <bound>`` when using the
Python 3.12 syntax. In the definition of a generic function or a generic
class that uses such a type variable ``T``, the type represented by ``T``
is assumed to be a subtype of its upper bound, so you can use methods
of the upper bound on values of type ``T`` (Python 3.12 syntax):

.. code-block:: python

   from typing import SupportsAbs

   def max_by_abs[T: SupportsAbs[float]](*xs: T) -> T:
       # We can use abs(), because T is a subtype of SupportsAbs[float].
       return max(xs, key=abs)

An upper bound can also be specified with the ``bound=...`` keyword
argument to :py:class:`~typing.TypeVar`.
Here is the example using the legacy syntax (Python 3.11 and earlier):

.. code-block:: python

   from typing import TypeVar, SupportsAbs

   T = TypeVar('T', bound=SupportsAbs[float])

   def max_by_abs(*xs: T) -> T:
       return max(xs, key=abs)

In a call to such a function, the type ``T`` must be replaced by a
type that is a subtype of its upper bound. Continuing the example
above:

.. code-block:: python

   max_by_abs(-3.5, 2)   # Okay, has type 'float'
   max_by_abs(5+6j, 7)   # Okay, has type 'complex'
   max_by_abs('a', 'b')  # Error: 'str' is not a subtype of SupportsAbs[float]

Type parameters of generic classes may also have upper bounds, which
restrict the valid values for the type parameter in the same way.

.. _generic-methods-and-generic-self:

Generic methods and generic self
********************************

You can also define generic methods. In
particular, the ``self`` parameter may also be generic, allowing a
method to return the most precise type known at the point of access.
In this way, for example, you can type check a chain of setter
methods (Python 3.12 syntax):

.. code-block:: python

   class Shape:
       def set_scale[T: Shape](self: T, scale: float) -> T:
           self.scale = scale
           return self

   class Circle(Shape):
       def set_radius(self, r: float) -> 'Circle':
           self.radius = r
           return self

   class Square(Shape):
       def set_width(self, w: float) -> 'Square':
           self.width = w
           return self

   circle: Circle = Circle().set_scale(0.5).set_radius(2.7)
   square: Square = Square().set_scale(0.5).set_width(3.2)

Without using generic ``self``, the last two lines could not be type
checked properly, since the return type of ``set_scale`` would be
``Shape``, which doesn't define ``set_radius`` or ``set_width``.

When using the legacy syntax, just use a type variable in the
method signature that is different from class type parameters (if any
are defined). Here is the above example using the legacy
syntax (3.11 and earlier):

.. code-block:: python

   from typing import TypeVar

   T = TypeVar('T', bound='Shape')

   class Shape:
       def set_scale(self: T, scale: float) -> T:
           self.scale = scale
           return self

   class Circle(Shape):
       def set_radius(self, r: float) -> 'Circle':
           self.radius = r
           return self

   class Square(Shape):
       def set_width(self, w: float) -> 'Square':
           self.width = w
           return self

   circle: Circle = Circle().set_scale(0.5).set_radius(2.7)
   square: Square = Square().set_scale(0.5).set_width(3.2)

Other uses include factory methods, such as copy and deserialization methods.
For class methods, you can also define generic ``cls``, using ``type[T]``
or :py:class:`Type[T] <typing.Type>` (Python 3.12 syntax):

.. code-block:: python

   class Friend:
       other: "Friend | None" = None

       @classmethod
       def make_pair[T: Friend](cls: type[T]) -> tuple[T, T]:
           a, b = cls(), cls()
           a.other = b
           b.other = a
           return a, b

   class SuperFriend(Friend):
       pass

   a, b = SuperFriend.make_pair()

Here is the same example using the legacy syntax (3.11 and earlier):

.. code-block:: python

   from typing import TypeVar

   T = TypeVar('T', bound='Friend')

   class Friend:
       other: "Friend | None" = None

       @classmethod
       def make_pair(cls: type[T]) -> tuple[T, T]:
           a, b = cls(), cls()
           a.other = b
           b.other = a
           return a, b

   class SuperFriend(Friend):
       pass

   a, b = SuperFriend.make_pair()

Note that when overriding a method with generic ``self``, you must either
return a generic ``self`` too, or return an instance of the current class.
In the latter case, you must implement this method in all future subclasses.

Note also that mypy cannot always verify that the implementation of a copy
or a deserialization method returns the actual type of self. Therefore
you may need to silence mypy inside these methods (but not at the call site),
possibly by making use of the ``Any`` type or a ``# type: ignore`` comment.

Mypy lets you use generic self types in certain unsafe ways
in order to support common idioms. For example, using a generic
self type in an argument type is accepted even though it's unsafe (Python 3.12
syntax):

.. code-block:: python

   class Base:
       def compare[T: Base](self: T, other: T) -> bool:
           return False

   class Sub(Base):
       def __init__(self, x: int) -> None:
           self.x = x

       # This is unsafe (see below) but allowed because it's
       # a common pattern and rarely causes issues in practice.
       def compare(self, other: 'Sub') -> bool:
           return self.x > other.x

   b: Base = Sub(42)
   b.compare(Base())  # Runtime error here: 'Base' object has no attribute 'x'

For some advanced uses of self types, see :ref:`additional examples <advanced_self>`.

Automatic self types using typing.Self
**************************************

Since the patterns described above are quite common, mypy supports a
simpler syntax, introduced in :pep:`673`, to make them easier to use.
Instead of introducing a type parameter and using an explicit annotation
for ``self``, you can import the special type ``typing.Self`` that is
automatically transformed into a method-level type parameter with the
current class as the upper bound, and you don't need an annotation for
``self`` (or ``cls`` in class methods). The example from the previous
section can be made simpler by using ``Self``:

.. code-block:: python

   from typing import Self

   class Friend:
       other: Self | None = None

       @classmethod
       def make_pair(cls) -> tuple[Self, Self]:
           a, b = cls(), cls()
           a.other = b
           b.other = a
           return a, b

   class SuperFriend(Friend):
       pass

   a, b = SuperFriend.make_pair()

This is more compact than using explicit type parameters. Also, you can
use ``Self`` in attribute annotations in addition to methods.

.. note::

   To use this feature on Python versions earlier than 3.11, you will need to
   import ``Self`` from ``typing_extensions`` (version 4.0 or newer).

.. _variance-of-generics:

Variance of generic types
*************************

There are three main kinds of generic types with respect to subtype
relations between them: invariant, covariant, and contravariant.
Assuming that we have a pair of types ``A`` and ``B``, and ``B`` is
a subtype of ``A``, these are defined as follows:

* A generic class ``MyCovGen[T]`` is called covariant in type variable
  ``T`` if ``MyCovGen[B]`` is always a subtype of ``MyCovGen[A]``.
* A generic class ``MyContraGen[T]`` is called contravariant in type
  variable ``T`` if ``MyContraGen[A]`` is always a subtype of
  ``MyContraGen[B]``.
* A generic class ``MyInvGen[T]`` is called invariant in ``T`` if neither
  of the above is true.

Let us illustrate this by few simple examples:

.. code-block:: python

    # We'll use these classes in the examples below
    class Shape: ...
    class Triangle(Shape): ...
    class Square(Shape): ...

* Most immutable container types, such as :py:class:`~collections.abc.Sequence`
  and :py:class:`~frozenset` are covariant. Union types are
  also covariant in all union items: ``Triangle | int`` is
  a subtype of ``Shape | int``.

  .. code-block:: python

    def count_lines(shapes: Sequence[Shape]) -> int:
        return sum(shape.num_sides for shape in shapes)

    triangles: Sequence[Triangle]
    count_lines(triangles)  # OK

    def foo(triangle: Triangle, num: int) -> None:
        shape_or_number: Union[Shape, int]
        # a Triangle is a Shape, and a Shape is a valid Union[Shape, int]
        shape_or_number = triangle

  Covariance should feel relatively intuitive, but contravariance and invariance
  can be harder to reason about.

* :py:class:`~collections.abc.Callable` is an example of type that behaves contravariant
  in types of arguments. That is, ``Callable[[Shape], int]`` is a subtype of
  ``Callable[[Triangle], int]``, despite ``Shape`` being a supertype of
  ``Triangle``. To understand this, consider:

  .. code-block:: python

    def cost_of_paint_required(
        triangle: Triangle,
        area_calculator: Callable[[Triangle], float]
    ) -> float:
        return area_calculator(triangle) * DOLLAR_PER_SQ_FT

    # This straightforwardly works
    def area_of_triangle(triangle: Triangle) -> float: ...
    cost_of_paint_required(triangle, area_of_triangle)  # OK

    # But this works as well!
    def area_of_any_shape(shape: Shape) -> float: ...
    cost_of_paint_required(triangle, area_of_any_shape)  # OK

  ``cost_of_paint_required`` needs a callable that can calculate the area of a
  triangle. If we give it a callable that can calculate the area of an
  arbitrary shape (not just triangles), everything still works.

* ``list`` is an invariant generic type. Naively, one would think
  that it is covariant, like :py:class:`~collections.abc.Sequence` above, but consider this code:

  .. code-block:: python

     class Circle(Shape):
         # The rotate method is only defined on Circle, not on Shape
         def rotate(self): ...

     def add_one(things: list[Shape]) -> None:
         things.append(Shape())

     my_circles: list[Circle] = []
     add_one(my_circles)     # This may appear safe, but...
     my_circles[-1].rotate()  # ...this will fail, since my_circles[0] is now a Shape, not a Circle

  Another example of invariant type is ``dict``. Most mutable containers
  are invariant.

When using the Python 3.12 syntax for generics, mypy will automatically
infer the most flexible variance for each class type variable. Here
``Box`` will be inferred as covariant:

.. code-block:: python

   class Box[T]:  # this type is implicitly covariant
       def __init__(self, content: T) -> None:
           self._content = content

       def get_content(self) -> T:
           return self._content

   def look_into(box: Box[Shape]): ...

   my_box = Box(Square())
   look_into(my_box)  # OK, but mypy would complain here for an invariant type

Here the underscore prefix for ``_content`` is significant. Without an
underscore prefix, the class would be invariant, as the attribute would
be understood as a public, mutable attribute (a single underscore prefix
has no special significance for mypy in most other contexts). By declaring
the attribute as ``Final``, the class could still be made covariant:

.. code-block:: python

   from typing import Final

   class Box[T]:  # this type is implicitly covariant
       def __init__(self, content: T) -> None:
           self.content: Final = content

       def get_content(self) -> T:
           return self.content

When using the legacy syntax, mypy assumes that all user-defined generics
are invariant by default. To declare a given generic class as covariant or
contravariant, use type variables defined with special keyword arguments
``covariant`` or ``contravariant``. For example (Python 3.11 or earlier):

.. code-block:: python

   from typing import Generic, TypeVar

   T_co = TypeVar('T_co', covariant=True)

   class Box(Generic[T_co]):  # this type is declared covariant
       def __init__(self, content: T_co) -> None:
           self._content = content

       def get_content(self) -> T_co:
           return self._content

   def look_into(box: Box[Shape]): ...

   my_box = Box(Square())
   look_into(my_box)  # OK, but mypy would complain here for an invariant type

.. _type-variable-value-restriction:

Type variables with value restriction
*************************************

By default, a type variable can be replaced with any type -- or any type that
is a subtype of the upper bound, which defaults to ``object``. However, sometimes
it's useful to have a type variable that can only have some specific types
as its value. A typical example is a type variable that can only have values
``str`` and ``bytes``. This lets us define a function that can concatenate
two strings or bytes objects, but it can't be called with other argument
types (Python 3.12 syntax):

.. code-block:: python

   def concat[S: (str, bytes)](x: S, y: S) -> S:
       return x + y

   concat('a', 'b')    # Okay
   concat(b'a', b'b')  # Okay
   concat(1, 2)        # Error!


The same thing is also possibly using the legacy syntax (Python 3.11 or earlier):

.. code-block:: python

   from typing import TypeVar

   AnyStr = TypeVar('AnyStr', str, bytes)

   def concat(x: AnyStr, y: AnyStr) -> AnyStr:
       return x + y

No matter which syntax you use, such a type variable is called a type variable
with a value restriction. Importantly, this is different from a union type,
since combinations of ``str`` and ``bytes`` are not accepted:

.. code-block:: python

   concat('string', b'bytes')   # Error!

In this case, this is exactly what we want, since it's not possible
to concatenate a string and a bytes object! If we tried to use
a union type, the type checker would complain about this possibility:

.. code-block:: python

   def union_concat(x: str | bytes, y: str | bytes) -> str | bytes:
       return x + y  # Error: can't concatenate str and bytes

Another interesting special case is calling ``concat()`` with a
subtype of ``str``:

.. code-block:: python

    class S(str): pass

    ss = concat(S('foo'), S('bar'))
    reveal_type(ss)  # Revealed type is "builtins.str"

You may expect that the type of ``ss`` is ``S``, but the type is
actually ``str``: a subtype gets promoted to one of the valid values
for the type variable, which in this case is ``str``.

This is thus subtly different from using ``str | bytes`` as an upper bound,
where the return type would be ``S`` (see :ref:`type-variable-upper-bound`).
Using a value restriction is correct for ``concat``, since ``concat``
actually returns a ``str`` instance in the above example:

.. code-block:: python

    >>> print(type(ss))
    <class 'str'>

You can also use type variables with a restricted set of possible
values when defining a generic class. For example, the type
:py:class:`Pattern[S] <typing.Pattern>` is used for the return
value of :py:func:`re.compile`, where ``S`` can be either ``str``
or ``bytes``. Regular expressions can be based on a string or a
bytes pattern.

A type variable may not have both a value restriction and an upper bound.

Note that you may come across :py:data:`~typing.AnyStr` imported from
:py:mod:`typing`. This feature is now deprecated, but it means the same
as our definition of ``AnyStr`` above.

.. _declaring-decorators:

Declaring decorators
********************

Decorators are typically functions that take a function as an argument and
return another function. Describing this behaviour in terms of types can
be a little tricky; we'll show how you can use type variables and a special
kind of type variable called a *parameter specification* to do so.

Suppose we have the following decorator, not type annotated yet,
that preserves the original function's signature and merely prints the decorated
function's name:

.. code-block:: python

   def printing_decorator(func):
       def wrapper(*args, **kwds):
           print("Calling", func)
           return func(*args, **kwds)
       return wrapper

We can use it to decorate function ``add_forty_two``:

.. code-block:: python

   # A decorated function.
   @printing_decorator
   def add_forty_two(value: int) -> int:
       return value + 42

   a = add_forty_two(3)

Since ``printing_decorator`` is not type-annotated, the following won't get type checked:

.. code-block:: python

   reveal_type(a)        # Revealed type is "Any"
   add_forty_two('foo')  # No type checker error :(

This is a sorry state of affairs! If you run with ``--strict``, mypy will
even alert you to this fact:
``Untyped decorator makes function "add_forty_two" untyped``

Note that class decorators are handled differently than function decorators in
mypy: decorating a class does not erase its type, even if the decorator has
incomplete type annotations.

Here's how one could annotate the decorator (Python 3.12 syntax):

.. code-block:: python

   from collections.abc import Callable
   from typing import Any, cast

   # A decorator that preserves the signature.
   def printing_decorator[F: Callable[..., Any]](func: F) -> F:
       def wrapper(*args, **kwds):
           print("Calling", func)
           return func(*args, **kwds)
       return cast(F, wrapper)

   @printing_decorator
   def add_forty_two(value: int) -> int:
       return value + 42

   a = add_forty_two(3)
   reveal_type(a)      # Revealed type is "builtins.int"
   add_forty_two('x')  # Argument 1 to "add_forty_two" has incompatible type "str"; expected "int"

Here is the example using the legacy syntax (Python 3.11 and earlier):

.. code-block:: python

   from collections.abc import Callable
   from typing import Any, TypeVar, cast

   F = TypeVar('F', bound=Callable[..., Any])

   # A decorator that preserves the signature.
   def printing_decorator(func: F) -> F:
       def wrapper(*args, **kwds):
           print("Calling", func)
           return func(*args, **kwds)
       return cast(F, wrapper)

   @printing_decorator
   def add_forty_two(value: int) -> int:
       return value + 42

   a = add_forty_two(3)
   reveal_type(a)      # Revealed type is "builtins.int"
   add_forty_two('x')  # Argument 1 to "add_forty_two" has incompatible type "str"; expected "int"

This still has some shortcomings. First, we need to use the unsafe
:py:func:`~typing.cast` to convince mypy that ``wrapper()`` has the same
signature as ``func`` (see :ref:`casts <casts>`).

Second, the ``wrapper()`` function is not tightly type checked, although
wrapper functions are typically small enough that this is not a big
problem. This is also the reason for the :py:func:`~typing.cast` call in the
``return`` statement in ``printing_decorator()``.

However, we can use a parameter specification, introduced using ``**P``,
for a more faithful type annotation (Python 3.12 syntax):

.. code-block:: python

   from collections.abc import Callable

   def printing_decorator[**P, T](func: Callable[P, T]) -> Callable[P, T]:
       def wrapper(*args: P.args, **kwds: P.kwargs) -> T:
           print("Calling", func)
           return func(*args, **kwds)
       return wrapper

The same is possible using the legacy syntax with :py:class:`~typing.ParamSpec`
(Python 3.11 and earlier):

.. code-block:: python

   from collections.abc import Callable
   from typing import TypeVar
   from typing_extensions import ParamSpec

   P = ParamSpec('P')
   T = TypeVar('T')

   def printing_decorator(func: Callable[P, T]) -> Callable[P, T]:
       def wrapper(*args: P.args, **kwds: P.kwargs) -> T:
           print("Calling", func)
           return func(*args, **kwds)
       return wrapper

Parameter specifications also allow you to describe decorators that
alter the signature of the input function (Python 3.12 syntax):

.. code-block:: python

   from collections.abc import Callable

   # We reuse 'P' in the return type, but replace 'T' with 'str'
   def stringify[**P, T](func: Callable[P, T]) -> Callable[P, str]:
       def wrapper(*args: P.args, **kwds: P.kwargs) -> str:
           return str(func(*args, **kwds))
       return wrapper

    @stringify
    def add_forty_two(value: int) -> int:
        return value + 42

    a = add_forty_two(3)
    reveal_type(a)      # Revealed type is "builtins.str"
    add_forty_two('x')  # error: Argument 1 to "add_forty_two" has incompatible type "str"; expected "int"

Here is the above example using the legacy syntax (Python 3.11 and earlier):

.. code-block:: python

   from collections.abc import Callable
   from typing import TypeVar
   from typing_extensions import ParamSpec

   P = ParamSpec('P')
   T = TypeVar('T')

   # We reuse 'P' in the return type, but replace 'T' with 'str'
   def stringify(func: Callable[P, T]) -> Callable[P, str]:
       def wrapper(*args: P.args, **kwds: P.kwargs) -> str:
           return str(func(*args, **kwds))
       return wrapper

You can also insert an argument in a decorator (Python 3.12 syntax):

.. code-block:: python

    from collections.abc import Callable
    from typing import Concatenate

    def printing_decorator[**P, T](func: Callable[P, T]) -> Callable[Concatenate[str, P], T]:
        def wrapper(msg: str, /, *args: P.args, **kwds: P.kwargs) -> T:
            print("Calling", func, "with", msg)
            return func(*args, **kwds)
        return wrapper

    @printing_decorator
    def add_forty_two(value: int) -> int:
        return value + 42

    a = add_forty_two('three', 3)

Here is the same function using the legacy syntax (Python 3.11 and earlier):

.. code-block:: python

    from collections.abc import Callable
    from typing import TypeVar
    from typing_extensions import Concatenate, ParamSpec

    P = ParamSpec('P')
    T = TypeVar('T')

    def printing_decorator(func: Callable[P, T]) -> Callable[Concatenate[str, P], T]:
        def wrapper(msg: str, /, *args: P.args, **kwds: P.kwargs) -> T:
            print("Calling", func, "with", msg)
            return func(*args, **kwds)
        return wrapper

.. _decorator-factories:

Decorator factories
-------------------

Functions that take arguments and return a decorator (also called second-order decorators), are
similarly supported via generics (Python 3.12 syntax):

.. code-block:: python

    from collections.abc import Callable
    from typing import Any

    def route[F: Callable[..., Any]](url: str) -> Callable[[F], F]:
        ...

    @route(url='/')
    def index(request: Any) -> str:
        return 'Hello world'

Note that mypy infers that ``F`` is used to make the ``Callable`` return value
of ``route`` generic, instead of making ``route`` itself generic, since ``F`` is
only used in the return type. Python has no explicit syntax to mark that ``F``
is only bound in the return value.

Here is the example using the legacy syntax (Python 3.11 and earlier):

.. code-block:: python

    from collections.abc import Callable
    from typing import Any, TypeVar

    F = TypeVar('F', bound=Callable[..., Any])

    def route(url: str) -> Callable[[F], F]:
        ...

    @route(url='/')
    def index(request: Any) -> str:
        return 'Hello world'

Sometimes the same decorator supports both bare calls and calls with arguments. This can be
achieved by combining with :py:func:`@overload <typing.overload>` (Python 3.12 syntax):

.. code-block:: python

    from collections.abc import Callable
    from typing import Any, overload

    # Bare decorator usage
    @overload
    def atomic[F: Callable[..., Any]](func: F, /) -> F: ...
    # Decorator with arguments
    @overload
    def atomic[F: Callable[..., Any]](*, savepoint: bool = True) -> Callable[[F], F]: ...

    # Implementation
    def atomic(func: Callable[..., Any] | None = None, /, *, savepoint: bool = True):
        def decorator(func: Callable[..., Any]):
            ...  # Code goes here
        if __func is not None:
            return decorator(__func)
        else:
            return decorator

    # Usage
    @atomic
    def func1() -> None: ...

    @atomic(savepoint=False)
    def func2() -> None: ...

Here is the decorator from the example using the legacy syntax
(Python 3.11 and earlier):

.. code-block:: python

    from collections.abc import Callable
    from typing import Any, Optional, TypeVar, overload

    F = TypeVar('F', bound=Callable[..., Any])

    # Bare decorator usage
    @overload
    def atomic(func: F, /) -> F: ...
    # Decorator with arguments
    @overload
    def atomic(*, savepoint: bool = True) -> Callable[[F], F]: ...

    # Implementation
    def atomic(func: Optional[Callable[..., Any]] = None, /, *, savepoint: bool = True):
        ...  # Same as above

Generic protocols
*****************

Mypy supports generic protocols (see also :ref:`protocol-types`). Several
:ref:`predefined protocols <predefined_protocols>` are generic, such as
:py:class:`Iterable[T] <collections.abc.Iterable>`, and you can define additional
generic protocols. Generic protocols mostly follow the normal rules for
generic classes. Example (Python 3.12 syntax):

.. code-block:: python

   from typing import Protocol

   class Box[T](Protocol):
       content: T

   def do_stuff(one: Box[str], other: Box[bytes]) -> None:
       ...

   class StringWrapper:
       def __init__(self, content: str) -> None:
           self.content = content

   class BytesWrapper:
       def __init__(self, content: bytes) -> None:
           self.content = content

   do_stuff(StringWrapper('one'), BytesWrapper(b'other'))  # OK

   x: Box[float] = ...
   y: Box[int] = ...
   x = y  # Error -- Box is invariant

Here is the definition of ``Box`` from the above example using the legacy
syntax (Python 3.11 and earlier):

.. code-block:: python

   from typing import Protocol, TypeVar

   T = TypeVar('T')

   class Box(Protocol[T]):
       content: T

Note that ``class ClassName(Protocol[T])`` is allowed as a shorthand for
``class ClassName(Protocol, Generic[T])`` when using the legacy syntax,
as per :pep:`PEP 544: Generic protocols <544#generic-protocols>`.
This form is only valid when using the legacy syntax.

When using the legacy syntax, there is an important difference between
generic protocols and ordinary generic classes: mypy checks that the
declared variances of generic type variables in a protocol match how
they are used in the protocol definition.  The protocol in this example
is rejected, since the type variable ``T`` is used covariantly as
a return type, but the type variable is invariant:

.. code-block:: python

   from typing import Protocol, TypeVar

   T = TypeVar('T')

   class ReadOnlyBox(Protocol[T]):  # error: Invariant type variable "T" used in protocol where covariant one is expected
       def content(self) -> T: ...

This example correctly uses a covariant type variable:

.. code-block:: python

   from typing import Protocol, TypeVar

   T_co = TypeVar('T_co', covariant=True)

   class ReadOnlyBox(Protocol[T_co]):  # OK
       def content(self) -> T_co: ...

   ax: ReadOnlyBox[float] = ...
   ay: ReadOnlyBox[int] = ...
   ax = ay  # OK -- ReadOnlyBox is covariant

See :ref:`variance-of-generics` for more about variance.

Generic protocols can also be recursive. Example (Python 3.12 synta):

.. code-block:: python

   class Linked[T](Protocol):
       val: T
       def next(self) -> 'Linked[T]': ...

   class L:
       val: int
       def next(self) -> 'L': ...

   def last(seq: Linked[T]) -> T: ...

   result = last(L())
   reveal_type(result)  # Revealed type is "builtins.int"

Here is the definition of ``Linked`` using the legacy syntax
(Python 3.11 and earlier):

.. code-block:: python

   from typing import TypeVar

   T = TypeVar('T')

   class Linked(Protocol[T]):
       val: T
       def next(self) -> 'Linked[T]': ...

.. _generic-type-aliases:

Generic type aliases
********************

Type aliases can be generic. In this case they can be used in two ways.
First, subscripted aliases are equivalent to original types with substituted type
variables. Second, unsubscripted aliases are treated as original types with type
parameters replaced with ``Any``.

The ``type`` statement introduced in Python 3.12 is used to define generic
type aliases (it also supports non-generic type aliases):

.. code-block:: python

    from collections.abc import Callable, Iterable

    type TInt[S] = tuple[int, S]
    type UInt[S] = S | int
    type CBack[S] = Callable[..., S]

    def response(query: str) -> UInt[str]:  # Same as str | int
        ...
    def activate[S](cb: CBack[S]) -> S:        # Same as Callable[..., S]
        ...
    table_entry: TInt  # Same as tuple[int, Any]

    type Vec[T: (int, float, complex)] = Iterable[tuple[T, T]]

    def inproduct[T: (int, float, complex)](v: Vec[T]) -> T:
        return sum(x*y for x, y in v)

    def dilate[T: (int, float, complex)](v: Vec[T], scale: T) -> Vec[T]:
        return ((x * scale, y * scale) for x, y in v)

    v1: Vec[int] = []      # Same as Iterable[tuple[int, int]]
    v2: Vec = []           # Same as Iterable[tuple[Any, Any]]
    v3: Vec[int, int] = [] # Error: Invalid alias, too many type arguments!

There is also a legacy syntax that relies on ``TypeVar``.
Here the number of type arguments must match the number of free type variables
in the generic type alias definition. A type variables is free if it's not
a type parameter of a surrounding class or function. Example (following
:pep:`PEP 484: Type aliases <484#type-aliases>`, Python 3.11 and earlier):

.. code-block:: python

    from typing import TypeVar, Iterable, Union, Callable

    S = TypeVar('S')

    TInt = tuple[int, S]  # 1 type parameter, since only S is free
    UInt = Union[S, int]
    CBack = Callable[..., S]

    def response(query: str) -> UInt[str]:  # Same as Union[str, int]
        ...
    def activate(cb: CBack[S]) -> S:        # Same as Callable[..., S]
        ...
    table_entry: TInt  # Same as tuple[int, Any]

    T = TypeVar('T', int, float, complex)

    Vec = Iterable[tuple[T, T]]

    def inproduct(v: Vec[T]) -> T:
        return sum(x*y for x, y in v)

    def dilate(v: Vec[T], scale: T) -> Vec[T]:
        return ((x * scale, y * scale) for x, y in v)

    v1: Vec[int] = []      # Same as Iterable[tuple[int, int]]
    v2: Vec = []           # Same as Iterable[tuple[Any, Any]]
    v3: Vec[int, int] = [] # Error: Invalid alias, too many type arguments!

Type aliases can be imported from modules just like other names. An
alias can also target another alias, although building complex chains
of aliases is not recommended -- this impedes code readability, thus
defeating the purpose of using aliases.  Example (Python 3.12 syntax):

.. code-block:: python

    from example1 import AliasType
    from example2 import Vec

    # AliasType and Vec are type aliases (Vec as defined above)

    def fun() -> AliasType:
        ...

    type OIntVec = Vec[int] | None

Type aliases defined using the ``type`` statement are not valid as
base classes, and they can't be used to construct instances:

.. code-block:: python

    from example1 import AliasType
    from example2 import Vec

    # AliasType and Vec are type aliases (Vec as defined above)

    class NewVec[T](Vec[T]):  # Error: not valid as base class
        ...

    x = AliasType()  # Error: can't be used to create instances

Here are examples using the legacy syntax (Python 3.11 and earlier):

.. code-block:: python

    from typing import TypeVar, Generic, Optional
    from example1 import AliasType
    from example2 import Vec

    # AliasType and Vec are type aliases (Vec as defined above)

    def fun() -> AliasType:
        ...

    OIntVec = Optional[Vec[int]]

    T = TypeVar('T')

    # Old-style type aliases can be used as base classes and you can
    # construct instances using them

    class NewVec(Vec[T]):
        ...

    x = AliasType()

    for i, j in NewVec[int]():
        ...

Using type variable bounds or value restriction in generic aliases has
the same effect as in generic classes and functions.


Differences between the new and old syntax
******************************************

There are a few notable differences between the new (Python 3.12 and later)
and the old syntax for generic classes, functions and type aliases, beyond
the obvious syntactic differences:

 * Type variables defined using the old syntax create definitions at runtime
   in the surrounding namespace, whereas the type variables defined using the
   new syntax are only defined within the class, function or type variable
   that uses them.
 * Type variable definitions can be shared when using the old syntax, but
   the new syntax doesn't support this.
 * When using the new syntax, the variance of class type variables is always
   inferred.
 * Type aliases defined using the new syntax can contain forward references
   and recursive references without using string literal escaping. The
   same is true for the bounds and constraints of type variables.
 * The new syntax lets you define a generic alias where the definition doesn't
   contain a reference to a type parameter. This is occasionally useful, at
   least when conditionally defining type aliases.
 * Type aliases defined using the new syntax can't be used as base classes
   and can't be used to construct instances, unlike aliases defined using the
   old syntax.


Generic class internals
***********************

You may wonder what happens at runtime when you index a generic class.
Indexing returns a *generic alias* to the original class that returns instances
of the original class on instantiation (Python 3.12 syntax):

.. code-block:: python

   >>> class Stack[T]: ...
   >>> Stack
   __main__.Stack
   >>> Stack[int]
   __main__.Stack[int]
   >>> instance = Stack[int]()
   >>> instance.__class__
   __main__.Stack

Here is the same example using the legacy syntax (Python 3.11 and earlier):

.. code-block:: python

   >>> from typing import TypeVar, Generic
   >>> T = TypeVar('T')
   >>> class Stack(Generic[T]): ...
   >>> Stack
   __main__.Stack
   >>> Stack[int]
   __main__.Stack[int]
   >>> instance = Stack[int]()
   >>> instance.__class__
   __main__.Stack

Generic aliases can be instantiated or subclassed, similar to real
classes, but the above examples illustrate that type variables are
erased at runtime. Generic ``Stack`` instances are just ordinary
Python objects, and they have no extra runtime overhead or magic due
to being generic, other than the ``Generic`` base class that overloads
the indexing operator using ``__class_getitem__``. ``typing.Generic``
is included as an implicit base class even when using the new syntax:

.. code-block:: python

   >>> class Stack[T]: ...
   >>> Stack.mro()
   [<class '__main__.Stack'>, <class 'typing.Generic'>, <class 'object'>]

Note that in Python 3.8 and earlier, the built-in types
:py:class:`list`, :py:class:`dict` and others do not support indexing.
This is why we have the aliases :py:class:`~typing.List`,
:py:class:`~typing.Dict` and so on in the :py:mod:`typing`
module. Indexing these aliases gives you a generic alias that
resembles generic aliases constructed by directly indexing the target
class in more recent versions of Python:

.. code-block:: python

   >>> # Only relevant for Python 3.8 and below
   >>> # If using Python 3.9 or newer, prefer the 'list[int]' syntax
   >>> from typing import List
   >>> List[int]
   typing.List[int]

Note that the generic aliases in ``typing`` don't support constructing
instances, unlike the corresponding built-in classes:

.. code-block:: python

   >>> list[int]()
   []
   >>> from typing import List
   >>> List[int]()
   Traceback (most recent call last):
   ...
   TypeError: Type List cannot be instantiated; use list() instead